International Journal of Intelligent Systems and Applications in Engineering
2016: Special Issue

The Assessment of Time-Domain Features for Detecting Symptoms of Diabetic Retinopathy

Elibol, Gülin (Unknown)
Ergin, Semih (Unknown)



Article Info

Publish Date
26 Dec 2016

Abstract

 Diabetes affects the capillary vessels in retina and causes vision loss. This disorder of retina due to diabetes is named as Diabetic Retinopathy (DR). Diagnosing the stages of DR is performed on a publicly available database (DiaraetDB1) via detecting the symptoms of this disease. Time-domain features are extracted and selected to classify a fundus image. Fisher’s Linear Discriminant Analysis (FLDA), Linear Bayes Normal Classifier (LDC), Decision Tree (DT) and k-Nearest Neighbor (k-NN) are used as the classification methods in the experimental benchmarking. The recognition accuracies are obtained using all features (68 features) and selected features separately. k-NN is observed as the best classification method for without feature selection case and it gives averagely 92.22% accuracy. For feature selection case, LDC gives the best average accuracy as 92.45% with maximum 7 carefully chosen features.

Copyrights © 2016






Journal Info

Abbrev

IJISAE

Publisher

Subject

Computer Science & IT

Description

International Journal of Intelligent Systems and Applications in Engineering (IJISAE) is an international and interdisciplinary journal for both invited and contributed peer reviewed articles that intelligent systems and applications in engineering at all levels. The journal publishes a broad range ...