This paper presents a fuzzy-genetic based design of permanent magnet synchronous motor. The selected motor structure with surface magnet and double layer winding is for high torque and low speed applications. The design approach involves combining fuzzy logic and genetic algorithm in a powerful combination. While the genetic algorithm is used in scanning of the solution space, the fuzzy logic approach has been utilized in selecting the most appropriate solutions. While choosing geometric parameters as input for optimization, design equations are obtained by using geometrical, electrical and magnetic properties of the motor. The output results are evaluated with motor efficiency, motor weight and weight of magnets as the objective function. Furthermore, the multiobjective design optimization results are compared with the results obtained for each single objective and tested with finite element method. The results are finally remarkable and quite compatible with the finite element method results.
Copyrights © 2018