International Journal of Intelligent Systems and Applications in Engineering
2016: Special Issue

A Multistage Deep Belief Networks Application on Arrhythmia Classification

ALTAN, Gokhan (Unknown)
KUTLU, Yakup (Unknown)
ALLAHVERDI, Novruz (Unknown)



Article Info

Publish Date
26 Dec 2016

Abstract

An electrocardiogram (ECG) is a biomedical signal type that determines the normality and abnormality of heart beats using the electrical activity of the heart and has a great importance for cardiac disorders. The computer-aided analysis of biomedical signals has become a fabulous utilization method over the last years. This study introduces a multistage deep learning classification model for automatic arrhythmia classification. The proposed model includes a multi-stage classification system that uses ECG waveforms and the Second Order Difference Plot (SODP) features using a Deep Belief Network (DBN) classifier which has a greedy layer wise training with Restricted Boltzmann Machines algorithm. The multistage DBN model classified the MIT-BIH Arrhythmia Database heartbeats into 5 main groups defined by ANSI/AAMI standards. All ECG signals are filtered with median filters to remove the baseline wander. ECG waveforms were segmented from long-term ECG signals using a window with a length of 501 data points (R wave centered). The extracted waveforms and elliptical features from the SODP are utilized as the input of the model.  The proposed DBN-based multistage arrhythmia classification model has discriminated five types of heartbeats with a high accuracy rate of 96.10%.

Copyrights © 2016






Journal Info

Abbrev

IJISAE

Publisher

Subject

Computer Science & IT

Description

International Journal of Intelligent Systems and Applications in Engineering (IJISAE) is an international and interdisciplinary journal for both invited and contributed peer reviewed articles that intelligent systems and applications in engineering at all levels. The journal publishes a broad range ...