Jurnal Teknologi dan Sistem Komputer
Volume 6, Issue 1, Year 2018 (January 2018)

Maximum Likelihood Classification dengan Ekstraksi Fitur Fast Fourier Transform untuk Pengenalan Mobil

Derry Alamsyah (Department of Informatics, STMIK Global Informatika MDP Palembang)



Article Info

Publish Date
31 Jan 2018

Abstract

The car recognition is part of the field of traffic surveillance on the image. In general, the car recognition using the form-based feature as a unique feature. Another feature in object recognition is the frequency feature. One feature of frequency is the Fourier feature, this feature is obtained by using Fast Fourier Transform (FFT) method. The object recognition can be done by determining the maximum value of likelihood and classifying it with Maximum Likelihood Classification (MLC). The use of FFT and MLC in the car object recognition has never been used. The results of both are in a good accuracy that is 76%.

Copyrights © 2018






Journal Info

Abbrev

JTSISKOM

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan ...