‎Let $R$ be a multiplicative hyperring‎. ‎In this paper‎, ‎we extend the concept of 2-absorbing hyperideals and 2-absorbing primary hyperideals to the context ‎$‎\varphi‎$‎-2-absorbing hyperideals and ‎$‎\varphi‎$‎-2-absorbing primary hyperideals. Let ‎$‎E(R)‎$‎ be the set of hyperideals of ‎$‎R‎$‎‎ and ‎$\varphi : E(R) \longrightarrow E(R) \cup \{\phi\}‎$‎ be a function. A nonzero proper hyperideal ‎$‎I‎$‎ of ‎$‎R‎$‎ is called a ‎$\varphi‎$‎- 2-absorbing hyperideal if for all ‎$x, y, z \in R, xoyoz \subseteq I- \varphi(I)‎$‎ implies‎$xoy \subseteq I‎$‎ or ‎$‎yoz \subseteq I‎$‎ or ‎$‎xoz \subseteq I‎$‎. Also, a nonzero proper hyperideal ‎$‎I‎$‎ of ‎$‎R‎$‎ is called a ‎$\varphi‎$‎- 2-absorbing primary hyperideal if for all ‎$x, y, z \in R, \ xoyoz \subseteq I- \varphi(I)‎$‎ implies‎$xoy \subseteq I‎$‎ or ‎$‎yoz \subseteq r(I)‎$‎ or ‎$‎xoz \subseteq r(I)‎$‎. A number of results concerning them are given.
Copyrights © 2019