Recently, Synthetic Aperture Radar (SAR) satellite imaging has become an increasing popular data source especially for land cover mapping because its sensor can penetrate clouds, haze, and smoke which a serious problem for optical satellite sensor observations in the tropical areas. The objective of this study was to determine an alternative method for land cover classification of ALOS-PALSAR data using Random Forest (RF) classifier. RF is a combination (ensemble) of tree predictors that each tree predictor depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. In this paper, the performance of the RF classifier for land cover classification of a complex area was explored using ALOS PALSAR data (25m mosaic, dual polarization) in the area of Jambi and South Sumatra, Indonesia. Overall accuracy of this method was 88.93%, with producer’s accuracies for forest, rubber, mangrove & shrubs with trees, cropland, and water classes were greater than 92%.
Copyrights © 2013