Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 3 No. 2 (2019): SinkrOn Volume 3 Number 2, April 2019

Generative Adversarial Networks Time Series Models to Forecast Medicine Daily Sales in Hospital

Husein, Amir Mahmud (Unknown)
Arsyal, Muhammad (Unknown)
Sinaga, Sutrisno (Unknown)
Syahputa, Hendra (Unknown)



Article Info

Publish Date
13 Mar 2019

Abstract

The success of the work of Generative Adversarial Networks (GAN) has recently achieved great success in many fields, such as stock market prediction, portfolio optimization, financial information processing and trading execution strategies, because the GAN model generates seemingly realistic data with models generator and discriminator .Planning for drug needs that are not optimal will have an impact on hospital services and economics, so it requires a reliable and accurate prediction model with the aim of minimizing the occurrence of shortages and excess stock, In this paper, we propose the GAN architecture to estimate the amount of drug sales in the next one week by using the drug usage data for the last four years (2015-2018) for training, while testing using data running in 2019 year , the classification results will be evaluated by Actual data uses indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). From the results of the experiment, seen from the value ​​of MAE, RMSE and MAPE, the proposed model has promising performance, but it still needs to be developed to explore ways to extract factors that are more valuable and influential in the trend disease progression, thus helping in the selection of optimal drugs

Copyrights © 2019






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...