cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jtsiskom@ce.undip.ac.id
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Teknologi dan Sistem Komputer
Published by Universitas Diponegoro
ISSN : 26204002     EISSN : 23380403     DOI : -
Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan penerapannya di bidang teknologi dan sistem komputer, meliputi sistem embedded, robotika, rekayasa perangkat lunak dan jaringan komputer. Lihat fokus dan ruang lingkup JTSiskom. JTSiskom terbit 4 (empat) nomor dalam satu tahun, yaitu bulan Januari, April, Juli dan Oktober (lihat Tanggal Penting). Artikel yang dikirimkan ke jurnal ini akan ditelaah setidaknya oleh 2 (dua) orang reviewer. Pengecekan plagiasi artikel dilakukan dengan Google Scholar dan Turnitin. Artikel yang telah dinyatakan diterima akan diterbitkan dalam nomor In-Press sebelum nomor regular terbit. JTSiskom telah terindeks DOAJ, BASE, Google Scholar dan OneSearch.id Perpusnas. Lihat daftar pengindeks. Artikel yang dikirimkan harus sesuai dengan Petunjuk Penulisan JTSiskom. JTSiskom menganjurkan Penulis menggunakan aplikasi manajemen referensi, seperti Mendeley, Endnote atau lainnya. Penulis harus register ke jurnal atau jika telah teregister, dapat langsung log in dan melakukan lima langkah submisi artikel. Penulis harus mengupload Pernyataan Pengalihan Hak Cipta saat submisi. Artikel yang terbit di JTSiskom akan diberikan nomer identifier unik (DOI/Digital Object Identifier) dan tersedia serta bebas diunduh dari portal JTSiskom ini. Penulis tidak dipungut biaya baik untuk pengiriman artikel maupun pemrosesan artikel (lihat APC/Article Processing Charge). Jurnal ini mengimplementasikan sistem LOCKSS untuk pengarsipan secara terdistribusi di jaringan LOCKSS privat.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Volume 7, Issue 2, Year 2019 (April 2019)" : 6 Documents clear
Predictive Adaptive Test with Selective Weighted Bayesian Through Questions and Answers Patterns to Measure Student Competency Levels Tekad Matulatan; Martaleli Bettiza; Muhamad Radzi Rathomi; Nola Ritha; Nurul Hayaty
Jurnal Teknologi dan Sistem Komputer Volume 7, Issue 2, Year 2019 (April 2019)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.815 KB) | DOI: 10.14710/jtsiskom.7.2.2019.83-88

Abstract

Computer Assisted Testing (CAT) system in Indonesia has been commonly used but only to displaying random exam questions and unable to detect the maximum performance of the test participants. This research proposes a simple way with a good level of accuracy in identifying the maximum ability of test participants. By applying the Bayesian probabilistic in the selection of random questions with a weight of difficulties, the system can obtain optimal results from participants compared to sequential questions. The accuracy of the system measured on the choice of questions at the maximum level of the examinee alleged ability by the system, compared to the correct answer from participants gives an average accuracy of 75% compared to 33% sequentially. This technique allows tests to be carried out in a shorter time without repetition, which can affect the fatigue of the test participants in answering questions.
Metode Pengenalan Tempat Secara Visual Berbasis Fitur CNN untuk Navigasi Robot di Dalam Gedung Hadha Afrisal
Jurnal Teknologi dan Sistem Komputer Volume 7, Issue 2, Year 2019 (April 2019)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1547.858 KB) | DOI: 10.14710/jtsiskom.7.2.2019.47-55

Abstract

Place recognition algorithm based-on visual sensor is crucial to be developed especially for an application of indoor robot navigation in which a Ground Positioning System (GPS) is not reliable to be utilized. This research compares the approach of place recognition of using learned-features from a model of Convolutional Neural Network (CNN) against conventional methods, such as Bag of Words (BoW) with SIFT features and Histogram of Oriented Uniform Patterns (HOUP) with its Local Binary Patterns (LBP). This research finding shows that the performance of our approach of using learned-features with transfer learning method from pre-trained CNN AlexNet is better than the conventional methods based-on handcrafted-features such as BoW and HOUP.
Sistem Cerdas Penentuan Lokasi Parkir pada Area Kampus Menggunakan Fuzzy Logic Berbasis Internet of Things Dody Ichwana; Surya Dwi Saputra; Shelvi Ekariani
Jurnal Teknologi dan Sistem Komputer Volume 7, Issue 2, Year 2019 (April 2019)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (725.572 KB) | DOI: 10.14710/jtsiskom.7.2.2019.64-70

Abstract

The increasing use of vehicles at campus locations makes it more difficult to find an empty parking lot. This paper develops a system for determining parking locations on campus areas using cloud-based fuzzy logic and Internet of Things (IoT). NFC is used to confirm the order code of the location that has been generated by the system. At the parking location, a sensor is installed to detect parking availability. The concept of IoT has been applied to build this system. Applications on smartphone devices are used for reservations at desired parking locations via the internet. The results show that the system has been able to detect the location of empty parking lots and make reservations in the Andalas University campus environment. The application of fuzzy logic has succeeded in obtaining parking location sequences based on distance and total capacity to find the best parking location.
Manajemen Alokasi Bandwidth Layanan Internet Menggunakan Fractional Knapsack Problem Ahmad Rizaqu Muttaqi; Sri Wahjuni; Shelvie Nidya Neyman
Jurnal Teknologi dan Sistem Komputer Volume 7, Issue 2, Year 2019 (April 2019)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (328.313 KB) | DOI: 10.14710/jtsiskom.7.2.2019.71-76

Abstract

The technical problems faced in e-government implemented by the Ministry of Religion of Indonesia since 2015 are minimal bandwidth requirements to provide information services and behavior of users who access entertainment sites. When peak hours occur, the congested network often occurs which becomes a significant bottleneck. This study aims to implement bandwidth management using the fractional knapsack problem method by limiting access to entertainment services. The QoS parameters used in this management are throughput, delay, and jitter. The method was tested using a paired t-test using throughput, jitter, and delay test parameters by comparing test parameters before and after bandwidth management applied. The significance value produced is between 75-85%. The method used can control the amount of traffic for each service, but on the other, hand the delay and jitter are still high. It is necessary to add additional free space to each service that can be used when needed to reduce the delay and jitter.
Algoritma Naive Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah Nurajijah Nurajijah; Dwiza Riana
Jurnal Teknologi dan Sistem Komputer Volume 7, Issue 2, Year 2019 (April 2019)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.005 KB) | DOI: 10.14710/jtsiskom.7.2.2019.77-82

Abstract

The decision on financing approval in sharia cooperatives has a high risk of the inability of customers to pay their credit obligations at maturity or referred to as bad credit. To maintain and minimize risk, an accurate method is needed to determine the financing agreement. The purpose of this study is to classify sharia cooperative loan history data using the Naïve Bayes algorithm, Decision Tree and SVM to predict the credibility of future customers. The results showed the accuracy of Naïve Bayes algorithm 77.29%, Decision Tree 89.02% and the highest Support Vector Machine (SVM) 89.86%.
Deteksi Arteri Karotis pada Citra Ultrasound B-Mode Berbasis Convolution Neural Network Single Shot Multibox Detector I Made Gede Sunarya; Tita Karlita; Joko Priambodo; Rika Rokhana; Eko Mulyanto Yuniarno; Tri Arief Sardjono; Ismoyo Sunu; I Ketut Eddy Purnama
Jurnal Teknologi dan Sistem Komputer Volume 7, Issue 2, Year 2019 (April 2019)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1288.438 KB) | DOI: 10.14710/jtsiskom.7.2.2019.56-63

Abstract

Detection of vascular areas (blood vessels) using B-Mode ultrasound images is needed for automatic applications such as registration and navigation in medical operations. This study developed the detection of the carotid artery area using Convolution Neural Network Single Shot Network Multibox Detector (SSD) to determine the bounding box ROI of the carotid artery area in B-mode ultrasound images. The data used are B-Mode ultrasound images on the neck that contain the carotid artery area (primary data). SSD method result is 95% of accuracy which is higher than the Hough transformation method, Ellipse method, and Faster RCNN in detecting carotid artery area in the B-Mode ultrasound image. The use of image enhancement with Gaussian filter, histogram equalization, and Median filters in this method can increase detection accuracy. The best process time of the proposed method is 2.09 seconds so that it can be applied in a real-time system.

Page 1 of 1 | Total Record : 6


Filter by Year

2019 2019


Filter By Issues
All Issue [IN PRESS] Volume 11, Issue 1, Year 2023 (January 2023) [IN PRESS] Volume 10, Issue 4, Year 2022 (October 2022) [IN PRESS] Volume 10, Issue 3, Year 2022 (July 2022) Volume 10, Issue 2, Year 2022 (April 2022) Volume 10, Issue 1, Year 2022 (January 2022) Volume 9, Issue 4, Year 2021 (October 2021) Volume 9, Issue 3, Year 2021 (July 2021) Volume 9, Issue 2, Year 2021 (April 2021) Volume 9, Issue 1, Year 2021 (January 2021) 2021: Publication In-Press Volume 8, Issue 4, Year 2020 (October 2020) Volume 8, Issue 3, Year 2020 (July 2020) Volume 8, Issue 2, Year 2020 (April 2020) Volume 8, Issue 1, Year 2020 (January 2020) Volume 7, Issue 4, Year 2019 (October 2019) Volume 7, Issue 3, Year 2019 (July 2019) Volume 7, Issue 2, Year 2019 (April 2019) Volume 7, Issue 1, Year 2019 (January 2019) Publication In-Press (2019) Volume 6, Issue 4, Year 2018 (October 2018) Volume 6, Issue 3, Year 2018 (July 2018) Volume 6, Issue 2, Year 2018 (April 2018) Volume 6, Issue 1, Year 2018 (January 2018) Volume 5, Issue 4, Year 2017 (October 2017) Volume 5, Issue 3, Year 2017 (July 2017) Volume 5, Issue 2, Year 2017 (April 2017) Volume 5, Nomor 1, Tahun 2017 (Januari 2017) Volume 4, Issue 4, Year 2016 (October 2016) Volume 4, Nomor 3, Tahun 2016 (Agustus 2016) Volume 4, Nomor 2, Tahun 2016 (April 2016) Volume 4, Nomor 1, Tahun 2016 (Januari 2016) Volume 3, Nomor 4, Tahun 2015 (Oktober 2015) Volume 3, Nomor 3, Tahun 2015 (Agustus 2015) Volume 3, Nomor 2, Tahun 2015 (April 2015) Volume 3, Nomor 1, Tahun 2015 (Januari 2015) Volume 2, Nomor 4, Tahun 2014 (Oktober 2014) Volume 2, Nomor 3, Tahun 2014 (Agustus 2014) Volume 2, Nomor 2, Tahun 2014 (April 2014) Volume 2, Nomor 1, Tahun 2014 (Januari 2014) Volume 1, Nomor 4, Tahun 2013 (Oktober 2013) Volume 1, Nomor 3, Tahun 2013 (Agustus 2013) Volume 1, Nomor 2, Tahun 2013 (April 2013) Volume 1, Nomor 1, Tahun 2013 (Januari 2013) More Issue