cover
Contact Name
Slamin
Contact Email
slamin@unej.ac.id
Phone
-
Journal Mail Official
slamin@unej.ac.id
Editorial Address
-
Location
,
INDONESIA
Indonesian Journal of Combinatorics
ISSN : 25412205     EISSN : -     DOI : -
Core Subject : Science,
Indonesian Journal of Combinatorics (IJC) publishes current research articles in any area of combinatorics and graph theory such as graph labelings, optimal network problems, metric dimension, graph coloring, rainbow connection and other related topics. IJC is published by the Indonesian Combinatorial Society (InaCombS), CGANT Research Group Universitas Jember (UNEJ), and Department of Mathematics Universitas Indonesia (UI).
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 4, No 2 (2020)" : 6 Documents clear
Triangles in the suborbital graphs of the normalizer of $\Gamma_0(N)$ Nazlı Yazıcı Gözütok; Bahadır Özgür Güler
Indonesian Journal of Combinatorics Vol 4, No 2 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.2.1

Abstract

In this paper, we investigate a suborbital graph for the normalizer of Γ0(N) ∈ PSL(2;R), where N will be of the form 24p2 such that p > 3 is a prime number. Then we give edge and circuit conditions on graphs arising from the non-transitive action of the normalizer.
The total disjoint irregularity strength of some certain graphs Meilin I Tilukay; A. N. M. Salman
Indonesian Journal of Combinatorics Vol 4, No 2 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.2.2

Abstract

Under a totally irregular total k-labeling of a graph G = (V,E), we found that for some certain graphs, the edge-weight set W(E) and the vertex-weight set W(V) of G which are induced by k = ts(G), W(E) ∩ W(V) is a non empty set. For which k, a graph G has a totally irregular total labeling if W(E) ∩ W(V) = ∅? We introduce the total disjoint irregularity strength, denoted by ds(G), as the minimum value k where this condition satisfied. We provide the lower bound of ds(G) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.
On (a,d)-antimagic labelings of Hn, FLn and mCn Ramalakshmi Rajendran; K. M. Kathiresan
Indonesian Journal of Combinatorics Vol 4, No 2 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.2.3

Abstract

In this paper, we derive the necessary condition for an (a,d )- antimagic labeling of some new classes of graphs such as Hn, F Ln and mCn. We prove that Hn is (7n +2, 1)-antimagic and mCn is ((mn+3)/2,1)- antimagic. Also we prove that F Ln has no ((n+1)/2,4)- antimagic labeling.
New families of star-supermagic graphs Anak Agung Gede Ngurah
Indonesian Journal of Combinatorics Vol 4, No 2 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.2.4

Abstract

A simple graph G admits a K1,n-covering if every edge in E(G) belongs to a subgraph of G isomorphic to K1,n. The graph G is K1,n-supermagic if there exists  a bijection f : V(G) ∪ E(G) → {1, 2, 3,..., |V(G) ∪ E(G)|} such that for every subgraph H' of G isomorphic to K1,n,  ∑v ∈ V(H')  f(v) + ∑e ∈ E(H') f(e) is  a constant and f(V(G)) = {1, 2, 3,..., |V(G)|}. In such a case, f is called a K1,n-supermagic labeling of G.  In this paper, we give a method how to construct K1,n-supermagic graphs from the old ones.
The forcing monophonic and forcing geodetic numbers of a graph Johnson John
Indonesian Journal of Combinatorics Vol 4, No 2 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.2.5

Abstract

For a connected graph G = (V, E), let a set S be a m-set of G. A subset T ⊆ S is called a forcing subset for S if S is the unique m-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing monophonic number of S, denoted by fm(S), is the cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted by fm(G), is fm(G) = min{fm(S)}, where the minimum is taken over all minimum monophonic sets in G. We know that m(G) ≤ g(G), where m(G) and g(G) are monophonic number and geodetic number of a connected graph G respectively. However there is no relationship between fm(G) and fg(G), where fg(G) is the forcing geodetic number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.
Locating-chromatic number of the edge-amalgamation of trees Hilda Assiyatun; Dian Kastika Syofyan; Edy Tri Baskoro
Indonesian Journal of Combinatorics Vol 4, No 2 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.2.6

Abstract

The investigation on the locating-chromatic number for graphs was initially studied by Chartrand et al. on 2002. This concept is in fact a special case of the partition dimension for graphs. Even though this topic has received much attention, the current progress is still far from satisfaction. We can define the locating-chromatic number of a graph G as the smallest integer k such that there exists a proper k-coloring on the vertex-set of G such that all vertices have distinct coordinates (color codes) with respect to this coloring. Not like the metric dimension of any tree which is completely solved, the locating-chromatic number for most types of trees are still open. In this paper, we study the locating-chromatic number of trees. In particular, we give lower and upper bounds of the locating-chromatic number of trees formed by an edge-amalgamation of the collection of smaller trees. We also show that the bounds are tight.

Page 1 of 1 | Total Record : 6