International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
111 Documents
Search results for
, issue
"Vol 13, No 5: October 2023"
:
111 Documents
clear
Support vector machine-based object classification for robot arm system
Vo Duy Cong;
Thai Thanh Hiep
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5047-5053
In this paper, a support vector machine (SVM) model is trained to classify objects in the automatic sorting system using a robot arm. The robot arm is used to grab objects and move them to the right position according to their shape predicted by the SVM model. The position of objects in the image is identified by using the contouring technique. The centroid of objects is calculated from the image moment of the object's contour. The calibration is conducted to get the parameters of the camera and combine with the pinhole camera model to compute the 3D position of the objects. The feature vector for SVM training is the zone feature and the SVM kernel is the Gaussian kernel. In the experiment, the SVM model is used to classify four objects with different shapes. The results show that the accuracy of the SVM classifier is 99.72%, 99.4%, 99.4% and 99.88% for four objects, respectively.
Machine learning in drug supply chain management during disease outbreaks: a systematic review
Gunadi Emmanuel;
Arief Ramadhan;
Muhammad Zarlis;
Edi Abdurachman;
Agung Trisetyarso
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5517-5533
The drug supply chain is inherently complex. The challenge is not only the number of stakeholders and the supply chain from producers to users but also production and demand gaps. Downstream, drug demand is related to the type of disease outbreak. This study identifies the correlation between drug supply chain management and the use of predictive parameters in research on the spread of disease, especially with machine learning methods in the last five years. Using the Publish or Perish 8 application, there are 71 articles that meet the inclusion criteria and keyword search requirements according to Kitchenham's systematic review methodology. The findings can be grouped into three broad groupings of disease outbreaks, each of which uses machine learning algorithms to predict the spread of disease outbreaks. The use of parameters for prediction with machine learning has a correlation with drug supply management in the coronavirus disease case. The area of drug supply risk management has not been heavily involved in the prediction of disease outbreaks.
A thermally aware performance analysis of quantum cellular automata logic gates
Sujatha Kotte;
Ganapavarapu Kanaka Durga
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp4987-4995
The high-performance digital circuits can be constructed at high operating frequency, reduced power dissipation, portability, and large density. Using conventional complementary-metal-oxide-semiconductor (CMOS) design process, it is quite difficult to achieve ultra-high-speed circuits due to scaling problems. Recently quantum dot cellular automata (QCA) are prosed to develop logic circuits at atomic level. In this paper, we analyzed the performance of QCA circuits under different temperature effects and observed that polarization of the cells is highly sensitive to temperature. In case of the 3-input majority gate the cell polarization drops to 50% with an increase in the temperature of 18 K and for 5 input majority gate the cell polarization drops more quickly than the 3-input majority. Further, the performance of majority gates also compared in terms of area and power dissipation. It has been noticed that the proposed logic gates can also be used for developing simple and complex and memory circuits.
A novel defect detection method for software requirements inspections
Bilal Alqudah;
Laiali Almazaydeh;
Reyad Alsalameen
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5865-5873
The requirements form the basis for all software products. Apparently, the requirements are imprecisely stated when scattered between development teams. Therefore, software applications released with some bugs, missing functionalities, or loosely implemented requirements. In literature, a limited number of related works have been developed as a tool for software requirements inspections. This paper presents a methodology to verify that the system design fulfilled all functional requirements. The proposed approach contains three phases: requirements collection, facts collection, and matching algorithm. The feedback results provided enable analysist and developer to make a decision about the initial application release while taking on consideration missing requirements or over-designed requirements.
An effective deep learning network for detecting and classifying glaucomatous eye
Md. Tanvir Ahmed;
Imran Ahmed;
Rubayed Ahmmad Rakin;
Mst. Tuhin Akter;
Nusrat Jahan
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5305-5313
Glaucoma is a well-known complex disease of the optic nerve that gradually damages eyesight due to the increase of intraocular pressure inside the eyes. Among two types of glaucoma, open-angle glaucoma is mostly happened by high intraocular pressure and can damage the eyes temporarily or sometimes permanently, another one is angle-closure glaucoma. Therefore, being diagnosed in the early stage is necessary to safe our vision. There are several ways to detect glaucomatous eyes like tonometry, perimetry, and gonioscopy but require time and expertise. Using deep learning approaches could be a better solution. This study focused on the recognition of open-angle affected eyes from the fundus images using deep learning techniques. The study evolved by applying VGG16, VGG19, and ResNet50 deep neural network architectures for classifying glaucoma positive and negative eyes. The experiment was executed on a public dataset collected from Kaggle; however, every model performed better after augmenting the dataset, and the accuracy was between 93% and 97.56%. Among the three models, VGG19 achieved the highest accuracy at 97.56%.
Reinforcement learning-based security schema mitigating man-in-the-middle attacks in fog computing
Hossam Elmansy;
Khaled Metwally;
Khaled Badran
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5908-5921
The fast emerging of internet of things (IoTs) has introduced fog computing as an intermediate layer between end-users and the cloud datacenters. Fog computing layer characterized by its closeness to end users for service provisioning than the cloud. However, security challenges are still a big concern in fog and cloud computing paradigms as well. In fog computing, one of the most destructive attacks is man-in-the-middle (MitM). Moreover, MitM attacks are hard to be detected since they performed passively on the network level. This paper proposes a MitM mitigation scheme in fog computing architecture. The proposal mapped the fog layer on software-defined network (SDN) architecture. The proposal integrated multi-path transmission control protocol (MPTCP), moving target defense (MTD) technique, and reinforcement learning agent (RL) in one framework that contributed significantly to improving the fog layer resources utilization and security. The proposed schema hardens the network reconnaissance and discovery, thus improved the network security against MitM attack. The evaluation framework was tested using a simulation environment on mininet, with the utilization of MPTCP kernel and Ryu SDN controller. The experimental results shows that the proposed schema maintained the network resiliency, improves resource utilization without adding significant overheads compared to the traditional transmission control protocol (TCP).
Ensembling techniques in solar panel quality classification
Trong Hieu Luu;
Phan Nguyen Ky Phuc;
Tran Lam;
Zhi-qiu Yu;
Van Tinh Lam
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5674-5680
Solar panel quality inspection is a time consuming and costly task. This study tries to develop as reliable method for evaluating the panels quality by using ensemble technique based on three machine learning models namely logistic regression, support vector machine and artificial neural network. The data in this study came from infrared camera which were captured in dark room. The panels are supplied with direct current (DC) power while the infrared camera is located perpendicular with panel surface. Dataset is divided into four classes where each class represent for a level of damage percentage. The approach is suitable for systems which has limited resources as well as number of training images which is very popular in reality. Result shows that the proposed method performs with the accuracy is higher than 90%.
A multi-microcontroller-based hardware for deploying Tiny machine learning model
Van-Khanh Nguyen;
Vy-Khang Tran;
Hai Pham;
Van-Muot Nguyen;
Hoang-Dung Nguyen;
Chi-Ngon Nguyen
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5727-5736
The tiny machine learning (TinyML) has been considered to applied on the edge devices where the resource-constrained micro-controller units (MCUs) were used. Finding a good platform to deploy the TinyML effectively is very crucial. The paper aims to propose a multiple micro-controller hardware platform for productively running the TinyML model. The proposed hardware consists of two dual-core MCUs. The first MCU is utilized for acquiring and processing input data, while the second is responsible for executing the trained TinyML network. Two MCUs communicate to each other using the universal asynchronous receiver-transmitter (UART) protocol. The multi-tasking programming technique is mainly applied on the first MCU to optimize the pre-processing new data. A three-phase motors faults classification TinyML model was deployed on the proposed system to evaluate the effectiveness. The experimental results prove that our proposed hardware platform was improved 34.8% the total inference time including pre-processing data of the proposed TinyML model in comparing with single micro-controller hardware platform.
An effective feature selection using improved marine predators algorithm for Alzheimer’s disease classification
Preeti Sadanand Topannavar;
Dinkar M. Yadav
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5126-5134
Alzheimer’s disease (AD) is an irremediable neurodegenerative illness developed by the fast deterioration of brain cells. AD is mostly common in elder people and it extremely disturbs the physical and mental health of patients, therefore early detection is essential to prevent AD development. However, the precise detection of AD and mild cognitive impairment (MCI) is difficult during classification. In this paper, the Residual network i.e., ResNet-18 is used for extracting the features, and the proposed improved marine predators algorithm (IMPA) is developed for choosing the optimum features to perform an effective classification of AD. The multi-verse optimizer (MVO) used in the IMPA helps to balance exploration and exploitation, which leads to the selection of optimal relevant features. Further, the classification of AD is accomplished using the multiclass support vector machine (MSVM). Open access series of imaging studies-1 (OASIS-1) and Alzheimer disease neuroimaging initiative (ADNI) datasets are used to evaluate the IMPA-MSVM method. The performance of the IMPA-MSVM method is analyzed using accuracy, sensitivity, specificity, positive predictive value (PPV) and matthews correlation coefficient (MCC). The existing methods such as the deep learning-based segmenting method using SegNet (DLSS), mish activation function (MAF) with spatial transformer network (STN) and BrainNet2D are used to evaluate the IMPA-MSVM method. The accuracy of IMPA-MSVM for the ADNI dataset is 98.43% which is more when compared to the DLSS and MAF-STN.
A deep convolutional structure-based approach for accurate recognition of skin lesions in dermoscopy images
Shimaa Fawzy;
Hossam El-Din Moustafa;
Ehab H. AbdelHay;
Mohamed Maher Ata
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i5.pp5792-5803
One-third of all cancer diagnoses worldwide are skin malignancies. One of the most common tumors, skin cancer can develop from a variety of dermatological conditions and is subdivided into different categories based on its textile, color, body, and other morphological characteristics. The most effective strategy to lower the mortality rate of melanoma is early identification because skin cancer incidence has been on the rise recently. In order to categorize dermoscopy images into the four diagnosis classifications of melanoma, benign, malignant, and human against machine (HAM) not melanoma, this research suggests a computer-aided diagnosis (CAD) system. Experimental results show that the suggested approach enabled 97.25% classification accuracy. In order to automate the identification of skin cancer and expedite the diagnosis process in order to save a life, the proposed technique offers a less complex and cutting-edge framework.