cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
Jurnal Aplikasi Statistika & Komputasi Statistik
ISSN : 20864132     EISSN : 26151367     DOI : -
Core Subject : Science, Education,
Redaksi menerima karya ilmiah atau artikel penelitian mengenai kajian teori statistika dan komputasi statistik pada bidang ekonomi dan sosial dan kependudukan, serta teknologi informasi. Redaksi berhak menyunting tulisan tanpa mengubah makna subtansi tulisan. Isi jurnal Aplikasi Statistika dan Komputasi Statistik dapat dikutip dengan menyebutkan sumbernya.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics" : 6 Documents clear
PERBANDINGAN ALGORITMA LSDBC DAN DBSCAN PADA PEMETAAN DAERAH RAWAN KEBAKARAN HUTAN Fella Ulandari; Robert Kurniawan
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/jurnalasks.v12i2.281

Abstract

Kebakaran hutan merupakan salah satu kejadian bencana alam di Indonesia yang menyebabkan deforestasi dan berbagai kerugian pada aspek ekologi, ekonomi, dan sosial. Pencegahan kebakaran hutan dan lahan dapat dilakukan dengan menyediakan data dan informasi meliputi lokasi/areal kebakaran dan daerah rawan kebakaran hutan dan lahan. Penutupan lahan yang cenderung cepat berubah menjadikan peta rawan kebakaran hutan yang dievaluasi setiap tiga tahun sekali menjadi tidak akurat lagi. Permasalahan ini dapat diatasi dengan pemanfaatan data titik panas yang disediakan secara real time oleh Lembaga Penerbangan dan Antariksa Nasional (LAPAN). Penelitian sebelumnya berhasil memetakan daerah rawan kebakaran hutan menggunakan penerapan algoritma Density Based Clustering Application with Noise (DBSCAN) pada data titik panas. Pada penelitian ini, algoritma Locally Scaled Density Based Clustering (LSDBC) digunakan pada data titik panas sebagai perbaikan dan perbandingan terhadap algoritma DBSCAN. Penelitian ini telah berhasil memetakan daerah rawan kebakaran hutan menggunakan algoritma DBSCAN dan LSDBC. Namun, algoritma LSDBC belum mampu menghasilkan klaster yang lebih baik dibandingkan algoritma DBSCAN.
TINJAUAN PEMANFAATAN BIG DATA PENGINDERAAN JAUH DAN PEMBELAJARAN MESIN UNTUK OFFICIAL STATISTICS DI WILAYAH PERKOTAAN Arif Handoyo Marsuhandi; Dwi Wahyu Triscowati; Arie Wahyu Wijayanto
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/jurnalasks.v12i2.282

Abstract

Kemajuan teknologi big data tidak hanya menawarkan potensi pemanfaatan namun juga tantangan bagi penyelenggaraan official statistics. Sebagai salah satu sumber big data yang potensial, data spektral penginderaan jauh yang tersedia secara terbuka dan gratis menjadi modal berharga untuk penyempurnaan kualitas official statistics. Makalah ini meninjau peluang dan tantangan pemanfaatan penginderaan jauh di wilayah perkotaan dan menyajikan studi kasus awal pada monitoring pertumbuhan lanskap perkotaan di Indonesia. Studi kasus awal ini menggunakan metode pembelajaran mesin ansambel sebagai model untuk klasifikasi, yaitu random forest yang merupakan pendekatan statistik nonparametrik dengan penerapan agregasi dan bootstrapping pada pohon keputusan. Penelitian ini mengambil fokus pada Kabupaten Banyuwangi, Provinsi Jawa Timur sebagai studi kasus. Hasil eksperimen dengan citra satelit Landsat-8 menunjukkan keberhasilan model dalam mendeteksi perubahan area bangunan selama 6 tahun pertumbuhan lanskap perkotaan pada 2015-2020. Terhitung pada tahun 2015 dan 2020, model yang dibangun dapat mendeteksi bangunan/konstruksi dengan akurasi masing-masing 93 dan 91 persen. Kesimpulan sementara ini membuka kemungkinan penerapan penginderaan jauh untuk menunjang survei dan sensus statistik pada wilayah perkotaan, khususnya sebagai salah satu indikator penting untuk penghitungan nilai tambah bruto (NTB) lapangan usaha konstruksi yang menjadi komponen dari Produk Domestik Regional Bruto (PDRB).
INDEKS KERENTANAN SOSIAL PADA ANAK DI INDONESIA: Studi Kasus COVID-19 Hernanto Adwiluvito; Suryo Adi Rakhmawan
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/jurnalasks.v12i2.283

Abstract

Hingga 12 September 2020, dilaporkan setidaknya lebih dari 214.000 kasus dengan 8.650 kematian di seluruh provinsi di Indonesia. Dengan belum tersedianya vaksin COVID-19, Indonesia dan negara lain mengandalkan berbagai kebijakan dan program pemerintah dengan mengedepankan protokol kesehatan untuk memperlambat penyebaran virus. Pada masa pandemi ini, anak merasakan berbagai dampak mulai dari permasalahan kesehatan, kesejahteraan, perkembangan dan harapan masa depan. Berbagai dampak negatif COVID-19 tidak akan dirasakan secara merata oleh semua anak. Anak yang berada pada lingkungan yang rentan kemungkinan akan merasakan dampak yang lebih besar dibandingkan yang lain. Namun, di Indonesia saat ini upaya mitigasi dan penurunan kerentanan tersebut belum didukung oleh informasi tingkat kerentanan sosial khususnya pada anak. Oleh karena itu, penelitian ini diharapkan dapat memberikan gambaran kerentanan sosial atau Social Vulnerability Index (SoVI) pada anak terhadap COVID-19 hingga tingkat kabupaten/kota. Indeks kerentanan sosial pada anak didapatkan melalui analisis faktor. Hasilnya, terdapat empat faktor yang memengaruhi SoVI pada anak yaitu status sosial ekonomi dan kesehatan, struktur keluarga, akses layanan kesehatan dan karakteristik demografi rumah tangga. Penyusunan SoVI yang berfokus pada anak dapat membantu pemerintah bertindak lebih dini ketika pandemi terjadi sehingga dampak yang dirasakan dapat diminimalisasi.
KARAKTERISTIK ANGKATAN KERJA DI PROVINSI SUMATERA SELATAN MENGGUNAKAN COMPOSITIONAL BIPLOT ANALYSIS Oki Dwipurwani; Eka Susanti
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/jurnalasks.v12i2.268

Abstract

Penelitian ini bertujuan untuk mendeskripsikan data komposisi angkatan kerja setiap kabupaten di Provinsi Sumatera Selatan (Sumsel). Salah satu metode deskripsi yang memberikan pemetaan berupa tampilan grafik dua dimensi pada data komposisi adalah Compositional Biplot Analysis (CBA). Hasil yang diperoleh adalah empat buah tampilan grafik CBA dengan informasi yang dapat diterangkan oleh setiap grafik lebih dari 85%. Kota Palembang, Kabupaten Banyuasin, Musi Rawas Utara, PALI, Musi Banyuasin, Muara Enim, Lubuk lingau, OKU, dan Prabumulih berada dalam satu klaster yang memiliki penduduk angkatan kerja sebagai pengangguran terbuka diatas rata-rata klaster lainnya, dan memiliki nilai TKT di atas 3,50.
KOMBINASI SURVEI KERANGKA SAMPEL AREA DAN REMOTE SENSING UNTUK ESTIMASI LUAS TANAMAN PADI DI MASA PANDEMI (KSA-Hybrid) Isnaeni Nur Khasanah; Dwi Wahyu Triscowati; Arif Handoyo; Widyo P. Buana; Kadir Kadir
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/jurnalasks.v12i2.284

Abstract

Pelaksanaan Survei Kerangka Sampel Area (KSA) di masa pandemi dihadapkan pada potensi penurunan realisasi pengamatan sampel akibat restriksi yang membatasi pergerakan masyarakat di sejumlah wilayah. Pembatasan Sosial Berskala Besar dan penerapan protokol kesehatan yang ketat untuk memutus rantai penyebaran Covid-19 mengakibatkan petugas tidak dapat melakukan kunjungan lapangan untuk mengamati fase tumbuh tanaman padi di beberapa sampel subsegmen. Pelaksanaan Survei KSA bertumpu pada pengamatan lapangan terhadap puluhan ribu titik amatan. Hal ini tidak operasional untuk wilayah dengan pembatasan sosial ketat atau yang terletak di daerah remote. Sebagai solusi, pengamatan titik amat sampel KSA dapat dilakukan dengan bantuan remote sensing. Penelitian ini mengkombinasikan Survei KSA dan remote sensing dalam mengestimasi luas tanaman padi yang disebut KSA-Hybrid. Fase tumbuh tanaman padi di lokasi sampel subsegmen KSA Provinsi Lampung diprediksi dengan model machine learning berdasarkan data citra satelit Landsat-8. Estimasi luasan setiap fase kemudian diperoleh dengan menggunakan metode yang diterapkan pada KSA rutin. Hasil evaluasi menunjukkan bahwa terdapat perbedaan yang cukup signifikan antara estimasi luas panen KSA-Hybrid dan KSA rutin. Selain itu, tingkat kesesuaian antara hasil KSA-Hybrid dan KSA rutin untuk amatan bulan Juni 2020 bervariasi antar kabupaten/kota pada rentang 62-76 persen. Pengembangan KSA-Hybrid dapat dilakukan dengan meningkatkan performa model machine learning dan penggunaan citra satelit dengan resolusi yang lebih tinggi.
ANALISIS KLASTER KASUS AKTIF COVID-19 MENURUT PROVINSI DI INDONESIA BERDASARKAN DATA DERET WAKTU Raditya Novidianto; Andrea Tri Rian Dani
Jurnal Aplikasi Statistika & Komputasi Statistik Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/jurnalasks.v12i2.280

Abstract

Corona Virus Disease 2019 (COVID-19) merupakan masalah yang sangat serius yang dihadapi oleh negara-negara di dunia, lebih dari 240 negara terjangkit virus ini. Pada 11 Maret 2020 WHO mengumumkan COVID-19 sebagai pandemi. Saat ini, penyebaran wabah COVID-19 terus bergerak signifikan, khususnya di Indonesia. Sejak mulai diumumkan pada awal Maret lalu hingga menjelang pertengahan Juli, jumlah kasus positif COVID-19 sudah mencapai 80.094 pasien yang dinyatakan positif, terkonfirmasi 3.797 kasus kematian dan 39.050 pasien yang dinyatakan sembuh. Salah satu kesulitan yang dialami pemerintah dalam penanganan COVID-19 yaitu tingkat kedaruratan dan kebijakan yang diterapkan oleh pemerintah daerah. Setiap daerah memiliki karakteristik yang berbeda-beda sehingga diperlukan pengetahuan mengenai kesamaan karakteristik daerah dalam penanganannya berdasarkan kasus COVID-19 yang berkelanjutan setiap harinya. Oleh karena itu, tujuan dari penelitian ini adalah menganalisis secara deskriptif mengenai kasus aktif COVID-19 berdasarkan data deret waktu dari setiap Provinsi di Indonesia. Selanjutnya melakukan proses pengelompokkan menggunakan data kasus aktif COVID-19 di Indonesia. Proses pengelompokkan menggunakan metode agglomerative hierarchical clustering, yaitu algoritma single, complete dan average linkage. Pengukuran kemiripan menggunakan Euclidean Distance dan Dynamic Time Warping (DTW). Berdasarkan hasil analisis, dengan menggunakan ukuran kebaikan yaitu koefisien korelasi cophenetic menunjukkan bahwa pengukuran kemiripan yang terbaik dari ketiga algoritma yang digunakan adalah Euclidean Distance. Dendogram yang didapat dari hasil pengelompokkan menunjukkan bahwa dengan ketiga algoritma yang digunakan menghasilkan anggota pengelompokkan yang sama. Pentingnya informasi tentang hasil pengelompokkan ini dapat membantu pemerintah pusat dan daerah untuk membuat strategi pencegahan penyebaran rantai virus COVID-19.

Page 1 of 1 | Total Record : 6


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 17 No 1 (2025): Jurnal Aplikasi Statistika & Komputasi Statistik Vol 16 No 2 (2024): Jurnal Aplikasi Statistika & Komputasi Statistik Vol 16 No 1 (2024): Jurnal Aplikasi Statistika & Komputasi Statistik Vol 15 No 2 (2023): Journal of Statistical Application and Computational Statistics Vol 15 No 1 (2023): Journal of Statistical Application and Computational Statistics Vol 14 No 2 (2022): Journal of Statistical Application and Computational Statistics Vol 14 No 1 (2022): Jurnal Aplikasi Statistika dan Komputasi Statistik Vol 13 No 2 (2021): Jurnal Aplikasi Statistika dan Komputasi Statistik Vol 13 No 1 (2021): Jurnal Aplikasi Statistika dan Komputasi Statistik Vol 12 No 3 (2020): Jurnal Aplikasi Statistika dan Komputasi Statistik Edisi Khusus Vol 12 No 2 (2020): Journal of Statistical Application and Computational Statistics Vol 12 No 1 (2020): Journal of Statistical Application and Computational Statistics Vol 11 No 2 (2019): Journal of Statistical Application and Computational Statistics Vol 11 No 1 (2019): Journal of Statistical Application and Computational Statistics Vol 10 No 2 (2018): Journal of Statistical Application and Computational Statistics Vol 10 No 1 (2018): Journal of Statistical Application and Computational Statistics Vol 9 No 2 (2017): Journal of Statistical Application and Computational Statistics Vol 9 No 1 (2017): Journal of Statistical Application and Computational Statistics Vol 8 No 2 (2016): Journal of Statistical Application and Computational Statistics Vol 8 No 1 (2016): Journal of Statistical Application & Statistical Computing Vol 7 No 2 (2015): Journal of Statistical Aplication and Statistical Computing Vol 7 No 1 (2015): Journal of Statistical Application and Computational Statistics More Issue