cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 1, No 3: September 2012" : 6 Documents clear
Multi-Party Security System using Artificial Neural Networks Urvashi Rahul Saxena; S.P Singh
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 1, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (132.595 KB)

Abstract

Multi-Party Security System is an improvised version of various security systems available using Artificial Neural Networks (ANN’s) as an Intelligent Agent for Intrusion Detection. This Paper focuses how inputs can be preserved to serve as a measure for securing communication protocol between two parties using privacy protocols at the hidden layer of Multi-layer Perceptron model. Various neural network structures are observed for evaluating the optimal network considering the number of hidden layers. Results depict that the generated system is capable of classifying records with about 90% of accuracy when two hidden layers are engulfed and the accuracy reduces to 87% with one hidden layer under observation.DOI: http://dx.doi.org/10.11591/ij-ai.v1i3.739
Ontology-based Social Recommender System Abeer Mohamed El-korany; Salma Mokhtar Khatab
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 1, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (481.65 KB)

Abstract

Knowledge sharing is vital in collaborative work environments.People working in the same environment aid better communication due to sharing information and resources within a contextual knowledge structure constructed based on their scope. Social networks play important role in our daily live as it enables people to communicate, and share information. The main idea of social network is to represent a group of users joined by some kind of voluntary relation without considering any preference. This paper proposes a social recommender system that follows user’s preferences to provide recommendation based on the similarity among users participating in the social network. Ontology is used to define and estimate similarity between users and accordingly being able to connect different stakeholders working in the community field such as social associations and volunteers.This approach is based on integration of major characteristics of content-based and collaborative filtering techniques. Ontology plays a central role in this system since it is used to store and maintain the dynamic profiles of the users which is essential for interaction and connection of appropriate knowledge flow and transaction.DOI: http://dx.doi.org/10.11591/ij-ai.v1i3.778
Classifying the EEG Signal through Stimulus of Motor Movement Using New Type of Wavelet Endro Yulianto; Adhi Susanto; Thomas Sri Widodo; Samekto Wibowo
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 1, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (125.142 KB)

Abstract

Brain Computer Interface (BCI) refers to a system designed to translate the brain signal in controlling a computer application.  The most widely used brain signal is electroencephalograph (EEG) for using the non-invasive method, and having a quite good resolution and relatively affordable equipments. This research purposively is to obtain the characteristics of EEG signals using the motor movement of “turn right” and “turn left” that is by moving the simulation of steering wheel. The characteristic of signal obtained is subsequently used as a reference to create a new type of wavelet for classification. The signal processing, including a 4 – 20 Hz bandpass filter, signal segmentation in 1 to 2 seconds after stimuli and signal correlation,  is used to obtain the characteristic of EEG signal; namely Event–Related Synchronization /Desynchronization (ERS/ERD). The result of test data classification to two new types of wavelet shows that each volunteer has a higher correlation value towards the new type of wavelet that has been designed with various wavelet scales for each individuals.DOI: http://dx.doi.org/10.11591/ij-ai.v1i3.843
Spatial Information based Image Clustering with A Swarm Approach Ouadfel Salima; Abdelmalik Taleb-Ahmed; Batouche Mohamed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 1, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (290.249 KB)

Abstract

Fuzzy c-means algorithm (FCM) is one of the most used clustering methods for image segmentation. However, the conventional FCM algorithm presents some limits like its sensitivity to the noise because it does not take into consideration contextual information and its convergence to local minimum since it is based on a gradient descent method. In this paper, we present a new spatial fuzzy clustering algorithm optimized by the Artificial Bee Colony (ABC) algorithm. ABC-SFCM has two major characteristics. First it tackles better noisy image segmentation by making use of the spatial local information into the membership function. Secondly, it improves the global performance by taking advantages of the global search capability of ABC. Experiments with synthetic and real images show that ABC-SFCM is robust to noise compared to other methods.DOI: http://dx.doi.org/10.11591/ij-ai.v1i3.765
Performance Analysis Of Clustering Protocol Using Fuzzy Logic For Wireless Sensor Network Vaibhav Godbole
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 1, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (963.559 KB)

Abstract

In order to gather information more efficiently, wireless sensor networks are partitioned into clusters. The most of the proposed clustering algorithms do not consider the location of the base station. This situation causes hot spots problem in multi-hop wireless sensor networks. In this paper, we analyze a fuzzy clustering algorithm which aims to prolong the lifetime of wireless sensor networks. This algorithm adjusts the cluster-head radius considering the residual energy and the distance to the base station parameters of the sensor nodes. This helps decreasing the intra-cluster work of the sensor nodes which are closer to the base station or have lower battery level. In this paper fuzzy logic is utilized for handling the uncertainties in cluster-head radius estimation. We compare this algorithm with LEACH according to first node dies, half of the nodes alive and energy-efficiency metrics. Our simulation results show that the fuzzy clustering approach performs better than LEACH. Therefore, the fuzzy clustering algorithm is a stable and energyefficient clustering algorithm.DOI: http://dx.doi.org/10.11591/ij-ai.v1i3.1259
Implementation of Artificial Bee Colony Algorithm Vimal Nayak; Haresh A. Suthar; Jagrut Gadit
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 1, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (238.577 KB)

Abstract

Evolutionary algorithm is a stochastic search method that mimics the natural biological evolution and the social behavior of species. Artificial bee colony algorithm is also a kind of evolutionary algorithm which was proposed by Dervis karaboga in 2005.Such algorithms have been developed to arrive at near-optimum solutions of multimodal optimization problems, which may not be possible with traditional algorithms. This paper describes implementation of ABC algorithm on complex benchmark functions like rastrigin, rosenbrock; sphere and schwefel the analysis of the performance of ABC algorithm were compared for the optimization of above benchmark functions with Partical Swarm Optimization (PSO). The ABC algorithm was successfully implemented in software tool ‘c’.DOI: http://dx.doi.org/10.11591/ij-ai.v1i3.588

Page 1 of 1 | Total Record : 6


Filter by Year

2012 2012


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue