cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 6, No 2: June 2017" : 5 Documents clear
A Decision System for Predicting Diabetes using Neural Networks K. Chandana Rani; Y. Prasanth
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 6, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (536.713 KB) | DOI: 10.11591/ijai.v6.i2.pp56-65

Abstract

Diabetic retinopathy (DR) is an eye fixed ill complete by the impairment of polygenic disorder and that we purchased to acknowledge it before of calendar for sensible treatment. On these lines, 2 social occasions were perceived, specifically non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR). During this paper, to dissect diabetic retinopathy, 3 models like Probabilistic Neural framework (PNN), Bayesian Classification and Support vector machine (SVM) square measure pictured and their displays square measure thought-about. The live of the unwellness unfold within the membrane are often recognized by analytic the elements of the membrane. The elements like veins, hemorrhages of NPDR image and exudates of PDR image square measure off from the unrefined photos victimization the icon prepare techniques, fed to the classifier for gathering a complete of 350 structure photos were used, out of that100 were used for designing and 250 pictures were used for testing. Exploratory results show that PNN has an accuracy of 89.6 % Bayes Classifier incorporates a exactness of 94.4% and SVM has an exactitude of 97.6%. What is more our system is equally continue running on 130 pictures open from "DIARETDB0: Evaluation Database and Procedure for Diabetic Retinopathy" and also the results show that PNN incorporates a exactness of 87.69% Bayes Classifier has an accuracy of 90.76% and SVM has a precision of 95.38%.
Neural Network Controller for Power Electronics Circuits K.J. Rathi; M. S. Ali
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 6, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (525.235 KB) | DOI: 10.11591/ijai.v6.i2.pp49-55

Abstract

Artificial Intelligence (AI) techniques, particularly the neural networks, are recently having significant impact on power electronics. This paper explores the perspective of neural network applications in the intelligent control for power electronics circuits. The Neural Network Controller (NNC) is designed to track the output voltage and to improve the performance of power electronics circuits. The controller is designed and simulated using MATLAB-SIMULINK
Improved Sensorless Direct Torque Control of Induction Motor Using Fuzzy Logic and Neural Network Based Duty Ratio Controller Sudheer H; Kodad SF; Sarvesh B
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 6, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (755.13 KB) | DOI: 10.11591/ijai.v6.i2.pp79-90

Abstract

This paper presents improvements in Direct Torque control of an induction motor using Fuzzy logic with Fuzzy logic and neural network based duty ratio controller. The conventional DTC (CDTC) of induction motor suffers from major drawbacks like high torque and flux ripples and poor transient response. Torque and flux ripples are reduced by replacing hysteresis controller and switching table with Fuzzy logic switching controller (FDTC). In FDTC the selected switching vector is applied for the complete switching time period. The FDTC steady state performance can be improved by using duty ratio controller, the selected switching vector is applied only for the time determined by the duty ratio (δ) and for the remaining time period zero switching vector is applied. The selection of duty ratio using Fuzzy logic and neural networks is projected in this paper. The effectiveness proposed methods are evaluated using simulation by Matlab/Simulink.
Incremental Approach of Neural Network in Back Propagation Algorithms for Web Data Mining A. P. Tawdar; M. S. Bewoor; S. H. Patil
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 6, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (321.073 KB) | DOI: 10.11591/ijai.v6.i2.pp74-78

Abstract

Text Classification is also called as Text Categorization (TC), is the task of classifying a set of text documents automatically into different categories from a predefined set. If a text document relates to exactly one of the categories, then it is called as single-label classification task; otherwise, it is called as multi-label classification task. For Information Retrieval (IR) and Machine Learning (ML), TC uses several tools and has received much attention in the last decades. In this paper, first classifies the text documents using MLP based machine learning approach (BPP) and then return the most relevant documents. And also describes a proposed back propagation neural network classifier that performs cross validation for original Neural Network. In order to optimize the classification accuracy, training time. Proposed web content mining methodology in the exploration with the aid of BPP. The main objective of this investigation is web document extraction and utilizing different grouping algorithm. This work extricates the data from the web URL.
Deep Machine Learning and Neural Networks: An Overview Chandrahas Mishra; D. L. Gupta
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 6, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.697 KB) | DOI: 10.11591/ijai.v6.i2.pp66-73

Abstract

Deep learning is a technique of machine learning in artificial intelligence area. Deep learning in a refined "machine learning" algorithm that far surpasses a considerable lot of its forerunners in its capacities to perceive syllables and picture. Deep learning is as of now a greatly dynamic examination territory in machine learning and example acknowledgment society. It has increased colossal triumphs in an expansive zone of utilizations, for example, speech recognition, computer vision and natural language processing and numerous industry item. Neural network is used to implement the machine learning or to design intelligent machines. In this paper brief introduction to all machine learning paradigm and application area of deep machine learning and different types of neural networks with applications is discussed.

Page 1 of 1 | Total Record : 5


Filter by Year

2017 2017


Filter By Issues
All Issue Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue