cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 25 Documents
Search results for , issue "Vol 9, No 3: September 2020" : 25 Documents clear
Source localization of tone perception in alcoholic brain indexed by standardized low-resolution electromagnetic tomography Vachrintr Sirisapsombat; Phakkharawat Sittiprapaporn; Chaiyavat Chaiyasut; Sasithorn Sirilun; Roungsan Chaisricharoen; Thamthiwat Nararatwanchai
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (18.121 KB) | DOI: 10.11591/ijai.v9.i3.pp561-568

Abstract

Alcohol consumption is known to associate with several diseases, injuries, and social problems. The long-term, excessive alcohol exposure can lead to liver cirrhosis and pancreatitis. After repating alcohol exposure, alcohol dependence would develop an individually behavioral, cognitive, and physiological phenomenon. Previous studies indicated that although the left hemisphere was selectively employed for processing linguistic information irrespectively of acoustic cues or subtype of phonological unit, the right hemisphere was employed for prosody-specific cues. These previous studies provided the impetus for future investigations of tone perception and temporal integration differences in tonal brain speaker who had long-term, excessive alcohol exposure such as Thai in the present study. The present study used both an auditory mismatch negativity (MMN) component of event-related potentials (ERPs) recording and the standardized Low-resolution Electromagnetic Tomography (sLORETA) techniques to measure the degree of cortical activation and to localize the brain area contributing to the scalp recorded auditory MMN component during the passive oddball paradigm. Ten healthy right-handed adults participated in this study. The findings showed that both [kha:] - mid tone perception and [khá:] - high tone perception elicited a strong MMN between 215-284 ms with reference to the standard-stimulus ERPs. Source localization was obtained in the middle temporal gyrus of the right hemisphere for both [kha:] - mid tone perception and [khá:] - high tone perception. Automatic detection of tone perception in alcoholic tonal brain is a useful index of language universal auditory memory traces.
Fault-type coverage based ant colony optimization algorithm for attaining smaller test suite Bharathi M; Sangeetha V
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1007.721 KB) | DOI: 10.11591/ijai.v9.i3.pp507-519

Abstract

In this paper, we proposed Fault-Type Coverage Based Ant Colony Optimization (FTCBACO) technique for test suite optimization. An algorithm starts with initialization of FTCBACO factors using test cases in test suite. Then, assign separate ant to each test case called vertex. Each ant chooses best vertices to attain food source called objective of the problem by means of updating of pheromone trails and higher probability trails. This procedure is repeated up to the ant reaches food source. In FTCBACO algorithm, minimal number of test cases with less execution time chosen by an ant to cover all faults type (objective) are taken as optimal solution. We measured the performance of FTCBACO against Greedy approach and Additional Greedy Approach in terms of fault type coverage, test suite size and execution time. However, the heuristic Greedy approach and Additional Greedy approach required more execution time and maximum test suite size to provide the best resolution for test suite optimization problem. Statistical investigations are performed to finalize the performance significance of FTCBACO with other approaches that concludes FTCBACO technique enriches the reduction rate of test suite and minimizes execution time of reducing test cases efficiently.
Towards a semantic integration of data from learning platforms Khaoula Mrhar; Otmane Douimi; Mounia Abik; Naoual Chaouni Benabdellah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v9.i3.pp535-544

Abstract

Nowadays, there is a huge production of Massive Open Online Courses MOOCs from universities around the world. The enrolled learners in MOOCs skyrocketed along with the number of the offered online courses. Of late, several universities scrambled to integrate MOOCs in their learning strategy. However, the majority of the universities are facing two major issues: firstly, because of the heterogeneity of the platforms used (e-learning and MOOC platforms), they are unable to establish a communication between the formal and non-formal system; secondly, they are incapable to exploit the feedbacks of the learners in a non-formal learning to personalize the learning according to the learner’s profile. Indeed, the educational platforms contain an extremely large number of data that are stored in different formats and in different places. In order to have an overview of all data related to their students from various educational heterogeneous platforms, the collection and integration of these heterogeneous data in a formal consolidated system is needed. The principal core of this system is the integration layer which is the purpose of this paper. In this paper, a semantic integration system is proposed. It allows us to extract, map and integrate data from heterogeneous learning platforms “MOOCs platforms, elearning platforms” by solving all semantic conflicts existing between these sources. Besides, we use different learning algorithms (Long short-term memory LSTM, Conditional Random Field CRF) to learn and recognize the mapping between data source and domain ontology.
Design and implementation of wireless system for vibration fault detection using fuzzy logic Moneer Ali Lilo; Maath Jasem Mahammad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v9.i3.pp545-552

Abstract

This paper aims at constructing the wireless system for fault detecting and monitoring by computer depending on the wireless and fuzzy logic technique. Wireless applications are utilized to identify, classify, and monitor faults in the real time to protect machines from damage .Two schemes were tested; first scheme fault collected X-Y-Z-axes mode while the second scheme collected Y-axis mode, which is utilized to protect the induction motor (IM) from vibrations fault. The vibration signals were processed in the central computer to reduce noise by signal processing stage, and then the fault was classified and monitored based on Fuzzy Logic (FL). The wireless vibration sensor was designed depending on the wireless techniques and C++ code. A fault collection, noise reduction, vibration fault classification and monitoring were implemented by MATLAB code.  In the second scheme the processed real time was reduced to 60%, which is included collection, filtering, and monitoring fault level. Results showed that the system has the ability to early detect the fault if appears on the machine with time processing of 1.721s. This work will reduce the maintenance cost and provide the ability to utilize the system with harsh industrial applications to diagnose the fault in real time processing.
Parallel processing using big data and machine learning techniques for intrusion detection Alaeddine Boukhalfa; Nabil Hmina; Habiba Chaoni
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (179.591 KB) | DOI: 10.11591/ijai.v9.i3.pp553-560

Abstract

Currently, information technology is used in all the life domains, multiple devices produce data and transfer them across the network, these transfers are not always secured, they can contain new menaces invisible by the current security devices. Moreover, the large amount and variety of the exchanged data cause difficulties related to the detection time. To solve these issues, we suggest in this paper, a new approach based on storing the large amount and variety of network traffic data employing Big Data techniques, and analyzing these data with Machine Learning algorithms, in a distributed and parallel way, in order to detect new hidden intrusions with less processing time. According to the results of the experiments, the detection accuracy of the Machine Learning methods reaches 99.9 %, and their processing time has been reduced considerably by applying them in a parallel and distributed way, which proves that our proposed model is effective for the detection of new intrusions.

Page 3 of 3 | Total Record : 25


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue