cover
Contact Name
Syahroni Hidayat
Contact Email
jtim.sekawan@gmail.com
Phone
-
Journal Mail Official
jtim.sekawan@gmail.com
Editorial Address
Jl. Bandeng No.25, Bintaro, Kec. Ampenan, Kota Mataram, Nusa Tenggara Bar. 83511
Location
Kota mataram,
Nusa tenggara barat
INDONESIA
Jurnal Teknologi Informasi dan Multimedia
ISSN : 27152529     EISSN : 26849151     DOI : https://doi.org/10.35746/jtim.v2i1
Core Subject : Science,
Cakupan dan ruang lingkup JTIM terdiri dari Databases System, Data Mining/Web Mining, Datawarehouse, Artificial Integelence, Business Integelence, Cloud & Grid Computing, Decision Support System, Human Computer & Interaction, Mobile Computing & Application, E-System, Machine Learning, Deep Learning, Information Retrievel (IR), Computer Network & Security, Multimedia System, Sistem Informasi, Sistem Informasi Geografis (GIS), Sistem Informasi Akuntansi, Database Security, Network Security, Fuzzy Logic, Expert System, Image Processing, Computer Graphic, Computer Vision, Semantic Web, Animation dan lainnya yang serumpun dengan Teknologi Informasi dan Multimedia.
Arjuna Subject : -
Articles 1 Documents
Search results for , issue "Vol. 3 No. 2 (2021): August" : 1 Documents clear
Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa Kartarina Kartarina; Ni Ketut Sriwinarti; Ni luh Putu Juniarti
Jurnal Teknologi Informasi dan Multimedia Vol. 3 No. 2 (2021): August
Publisher : Sekawan Institut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v3i2.159

Abstract

In this research the author aims to apply the K-NN and Naive Bayes algorithms for predicting student graduation rates at Sekolah Tinggi Pariwisata (STP) Mataram, The comparison of these two methods was carried out because based on several previous studies it was found that K-NN and Naive Bayes are well-known classification methods with a good level of accuracy. But which one has a better accuracy rate than the two algorithms, that's what researchers are trying to do. The output of this application is in the form of information on the prediction of student graduation, whether to graduate on time or not on time. The selection of STP as the research location was carried out because of the imbalance between the entry and exit of students who had completed their studies. Students who enter have a large number, but students who graduate on time according to the provisions are far very small, resulting in accumulation of the high number of students in each period of graduation, so it takes the initial predictions to quickly overcome these problems. Based on the results of designing, implementing, testing, and testing the Student Graduation Prediction Application program using the K-NN and Naive Bayes Methods with the Cross Validation method, the result is an accuracy for the K-NN method of 96.18% and for the Naive Bayes method an accuracy of 91.94% with using the RapideMiner accuracy test. So based on the results of the two tests between the K-NN and Naive Bayes methods which produce the highest accuracy, namely the K-NN method with an accuracy of 96.18%. So it can be concluded that the K-NN method is more feasible to use to predict student graduation

Page 1 of 1 | Total Record : 1