cover
Contact Name
Iswanto
Contact Email
-
Phone
+628995023004
Journal Mail Official
jrc@umy.ac.id
Editorial Address
Kantor LP3M Gedung D Kampus Terpadu UMY Jl. Brawijaya, Kasihan, Bantul, Yogyakarta 55183
Location
Kab. bantul,
Daerah istimewa yogyakarta
INDONESIA
Journal of Robotics and Control (JRC)
ISSN : 27155056     EISSN : 27155072     DOI : https://doi.org/10.18196/jrc
Journal of Robotics and Control (JRC) is an international open-access journal published by Universitas Muhammadiyah Yogyakarta. The journal invites students, researchers, and engineers to contribute to the development of theoretical and practice-oriented theories of Robotics and Control. Its scope includes (but not limited) to the following: Manipulator Robot, Mobile Robot, Flying Robot, Autonomous Robot, Automation Control, Programmable Logic Controller (PLC), SCADA, DCS, Wonderware, Industrial Robot, Robot Controller, Classical Control, Modern Control, Feedback Control, PID Controller, Fuzzy Logic Controller, State Feedback Controller, Neural Network Control, Linear Control, Optimal Control, Nonlinear Control, Robust Control, Adaptive Control, Geometry Control, Visual Control, Tracking Control, Artificial Intelligence, Power Electronic Control System, Grid Control, DC-DC Converter Control, Embedded Intelligence, Network Control System, Automatic Control and etc.
Articles 15 Documents
Search results for , issue "Vol 3, No 2 (2022): March" : 15 Documents clear
Backstepping-based Super-Twisting Sliding Mode Control for a Quadrotor Manipulator with Tiltable Rotors Shilin Yi; Keigo Watanabe; Isaku Nagai
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13368

Abstract

Designing a robust controller is very important in the control of outdoor unmanned aerial vehicles. This paper presents the design procedures and implementation of super-twisting sliding mode controller, which is a robust nonlinear controller. The robust controller is applied to an over-actuated quadrotor manipulator with four tiltable rotors. A serial manipulator with two links is mounted on the bottom of the quadrotor. The quadrotor possesses the property of decoupling its position and orientation. The main contribute of this paper is that a super-twisting sliding mode controller in vector form is designed and applied to the control of an over-actuated quadrotor manipulator. Another contribution of this paper is that the stability of the closed-loop system is proved by utilizing the Lyapunov stability theory. It is confirmed that the performance of the super-twisting sliding mode controller is superior to that of the conventional backstepping controller in terms of convergence rate and accuracy by simulations.
Simulation Model of Servo Motor by Using Matlab Fatin Nabeel Abdullah; Ghada Adel Aziz; Salam Waley Shneen
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13959

Abstract

The research aims to develop documented empirical data to obtain a high-accuracy and effective system according to a principal system as a model that represents the system for all expected cases and different working conditions. The current works are simulating a servo motor that works with specifications as a mathematical representation of it down to its representation with a transformation function. The simulation is done for different cases, the first is without a controller, and the other is an operation simulation with a conventional controller that is with a PID controller. The results, through response and accuracy, prove the preference of PID controller systems in the speed of response and high accuracy with the change or different conditions of the system, i.e., working with linear systems. A simulation is being conducted to verify the use of control systems to improve the performance of servo motors. Algorithms of control systems are developed according to designs based on prior experience. Speed and position control are the most common and used in many applications, which created the need to choose them. To overcome fluctuations and obtain a quick response and a high-precision system used, control systems, as the results proved. The research contribution is developing a design for the user control systems also checking them in simulation with the servo motor system using MATLAB. They test them in the servo motor control as well to test their performance experimentally.
Optimization of Renewable Energy Consumption in Charging Electric Vehicles Using Intelligent Algorithms Reza Alayi; Alfian Ma'arif; Yaser Ebazadeh; Ferydon Gharadaghi; Farnaz Jahanbin; Nima Shafaghatian
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13118

Abstract

Today, due to the considerable growth of the power/electricity industry, the high distance between low and high loads, and also economic crisis plagued most of the countries in the world, the operation of power plants has been transformed into a vital issue. Also, increasing use of energy and lack of accountability of conventional resources in response to supply the need has created many problems, including a decrease of fossil fuel sources, adverse environmental impacts, and increase of Greenhouse Gases (GHGs) all around the world. The concerns induced by this problem have caused the technologies consistent with an environment such as Electric Vehicles (EVs) to attract more and more attention. According to the capability of two-side exchange of power in these vehicles, if a significant number of them are connected to a net under management and intelligent control of an institution consistently, they can behave such a virtual small power plant with high start-up speed and without any cost.
Computer Vision-based Robotic Arm for Object Color, Shape, and Size Detection Md. Abdullah-Al-Noman; Anika Nawer Eva; Tabassum Binth Yeahyea; Riasat Khan
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13906

Abstract

Various aspects of the human workplace have been influenced by robotics due to its precision and accessibility. Nowadays, industrial activities have become more automated, increasing efficiency while reducing the production time, human labor, and risks involved. With time, electronic technology has advanced, and the ultimate goal of such technological advances is to make robotic systems as human-like as possible. As a result of this blessing of technological advances, robots will perform jobs far more efficiently than humans in challenging situations. In this paper, an automatic computer vision-based robotic gripper has been built that can select and arrange objects to complete various tasks. This study utilizes the image processing methodology of the PixyCMU camera sensor to distinguish multiple objects according to their distinct colors (red, yellow, and green). Next, a preprogrammed command is generated in the robotic arm to pick the item employing Arduino Mega and four MG996R servo motors. Finally, the device releases the object according to its color behind the fixed positions of the robotic arm to a specific place. The proposed system can also detect objects' geometrical shapes (circle, triangle, square, rectangle, pentagon, and star) and sizes (large, medium, and small) by utilizing OpenCV image processing libraries in Python language. Empirical results demonstrate that the designed robotic arm detects colored objects with 80% accuracy. It performs an excellent size and shapes recognition precision in real-time with 100% accuracy.
Systematic Review on Missing Data Imputation Techniques with Machine Learning Algorithms for Healthcare Amelia Ritahani Ismail; Nadzurah Zainal Abidin; Mhd Khaled Maen
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13133

Abstract

Missing data is one of the most common issues encountered in data cleaning process especially when dealing with medical dataset. A real collected dataset is prone to be incomplete, inconsistent, noisy and redundant due to potential reasons such as human errors, instrumental failures, and adverse death. Therefore, to accurately deal with incomplete data, a sophisticated algorithm is proposed to impute those missing values. Many machine learning algorithms have been applied to impute missing data with plausible values. However, among all machine learning imputation algorithms, KNN algorithm has been widely adopted as an imputation for missing data due to its robustness and simplicity and it is also a promising method to outperform other machine learning methods. This paper provides a comprehensive review of different imputation techniques used to replace the missing data. The goal of the review paper is to bring specific attention to potential improvements to existing methods and provide readers with a better grasps of imputation technique trends.
Development Plan of Unmanned System and Development Status of UUV Technology in Foreign Countries Jin-Yun Wang; Wei Ke
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.10201

Abstract

The future battlefield will be unmanned combat as the leading role, and the unmanned underwater vehicle (UUV) will play an important role in the future underwater battlefield. In order to maintain its maritime strategic advantages, the U. S. military has formulated a long-term development plan for the unmanned aerial vehicle (UAS) in recent years. The technology of unmanned underwater vehicles (UUV), which is characterized by strong endurance, high mobility, and high covert attack, has become the future development trend. In addition, Russia, with its strong industrial foundation and technical strength, has introduced its latest development status. At last, the latest research results of the new concept of surface/underwater cross-medium submarine were introduced. The results show that the new intelligent cross-medium submarine will become the mainstream of future development. The research provides a reference for the development of unmanned equipment in China.
Risk Analysis of Nuclear Power Plant (NPP) Operations by Artificial Intelligence (AI) in Robot Kyung Bae Jang; Chang Hyun Baek; Tae Ho Woo
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13984

Abstract

The cognitive architecture is investigated for the management in the nuclear power plant (NPP) site in which artificial intelligence (AI) is incorporated. The normal operation and accident are modeled for the simulations incorporated with the robot intelligence algorithm, where random sampling plays a major role in the quantifications. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) and the Cognitive skill for plant operations are calculated for the study. Simulations show the ADS-IDAC modeling and simulation results of two peaks in 21st and 21.75th sequences. Otherwise, there are several peaks with one big peak in 13.25th sequences. The big peak is in the 25.75th sequence in Mental State, Circumstances, and Identity. The accident situation is related to actions through the cognitive systems. In the operation case, a variety of signals are shown in which the operations of the plant could show several kinds of actions to be done by the robot. The figure shows the procedure of nuclear cognitive architecture. A nuclear accident is investigated by the designed modeling in which the actions of robots are quantified by the artificial brain. The developed algorithm of this paper could be applied to the other kinds of complex industrial systems like airplane operations and safety systems, spacecraft systems, and so on.
Design and Implementation of Double Loop Control Strategy in TPFW Voltage and Current Regulated Inverter for Photovoltaic Application Leonardus Heru Pratomo; Agutinus Fidelis Wibisono; Slamet Riyadi
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.14365

Abstract

Increasing demands for renewable energy encourage the development of inverters as a solution for converting energy from direct photovoltaic current (DC) output to alternative current (AC) at a maximum output power. Several nation standard systems are three-phase four-wired (TPFW), which means that the TPFW inverter must be used. The issue arises because the TPFW inverter is operated through an open-loop system, which has the problem of preventing the inverter from adjusting the voltage and current as needed. Hence, the open-loop system must be converted to a closed-loop system which is usually used only single control. The single strategy control is not effective because this strategy cannot regulate voltage and current at the same time. It only controls either voltage or current. The output voltage or current is changed when the load value is changed. Due to its weaknesses, the study proposes a new double-control strategy method that utilizes a PI strategy (P) controller as a voltage controller and a proportional strategy control as a current controller. This strategy is tested and measured by using simulation, showing a THD value of 1.07%. Accordance to IEEE standards, the THD value is within the recommended limit. Therefore, the output voltage and current produced have a good signal with a low ripple and stability without fluctuation. 
Chattering Analysis of an Optimized Sliding Mode Controller for an Electro-Hydraulic Actuator System Chong Chee Soon; Rozaimi Ghazali; Muhamad Fadli Ghani; Chai Mau Shern; Yahaya Md. Sam; Zulfatman Has
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13671

Abstract

Wear and tear are usually caused by various factors, which reduce the life span of a mechanical part. In the control engineering of an Electrohydraulic actuator system, the wear and tear can be caused by the system or the controller itself. This article examines the chattering effect that occurs during the sliding mode controller (SMC) design, and its effect on the nonlinear electrohydraulic actuator (EHA) system. To examine the chattering phenomenon, signum function is first applied on the switching function of the SMC. Then, parameters of the controller are obtained using single objective particle swarm optimization (PSO) method. These parameters are then applied to the switching function with hyperbolic tangent function. Lastly, the performance of both functions is analysed and compared based on graph and numerical data. From the output data, chattering phenomenon generated on the signum function is greatly eliminated by using hyperbolic tangent function.
Mini Drone Linear and Nonlinear Controller System Design and Analyzing Esraa Hadi Kadhim; Ahmad T. Abdulsadda
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.14180

Abstract

Choosing the mini-drone for a specific payload for designing purposes is one of the most challenging for both cost and design purposes. It is important to develop and analyze the flight control systems of the quadcopter-type Parrot mini drone and how to make the drones more tolerant of adverse weather conditions. The main problem with any quadcopter is that it loses its balance when exposed to any external influence, even if that influence is weak. Where the controller is the most important part of the drone, six plane controllers cover the six degrees of freedom (6dof) in the movement of the drone. In our research, we have improved the height controller in the drone, thus improving the altitude controller by using (PD) and increasing the values of (Kp and Kd) in the altitude controller of the Parrot Mini Drone Mambo to make it more bearable to external influence and to maintain its altitude. We assumed that the aircraft was exposed to bad weather conditions, such as snowfall and dust, which led to an increase in the speed at which the drone fell. We also increased the free fall constant of the object in the simulation design of the drone from (-9.81 m/s2 to -12.81 m/s2) and used Matlab R2021a Simulink to undertake the tuning of the (Kp and Kd) values. This study yielded good results, as illustrated in the results section. Therefore, this research paper suggests adopting the PD controller in the altitude controller and the new values of Kp and Kd to make the drone more tolerant of weather conditions. We tested these results in practice and got good results.

Page 1 of 2 | Total Record : 15