cover
Contact Name
Iswanto
Contact Email
-
Phone
+628995023004
Journal Mail Official
jrc@umy.ac.id
Editorial Address
Kantor LP3M Gedung D Kampus Terpadu UMY Jl. Brawijaya, Kasihan, Bantul, Yogyakarta 55183
Location
Kab. bantul,
Daerah istimewa yogyakarta
INDONESIA
Journal of Robotics and Control (JRC)
ISSN : 27155056     EISSN : 27155072     DOI : https://doi.org/10.18196/jrc
Journal of Robotics and Control (JRC) is an international open-access journal published by Universitas Muhammadiyah Yogyakarta. The journal invites students, researchers, and engineers to contribute to the development of theoretical and practice-oriented theories of Robotics and Control. Its scope includes (but not limited) to the following: Manipulator Robot, Mobile Robot, Flying Robot, Autonomous Robot, Automation Control, Programmable Logic Controller (PLC), SCADA, DCS, Wonderware, Industrial Robot, Robot Controller, Classical Control, Modern Control, Feedback Control, PID Controller, Fuzzy Logic Controller, State Feedback Controller, Neural Network Control, Linear Control, Optimal Control, Nonlinear Control, Robust Control, Adaptive Control, Geometry Control, Visual Control, Tracking Control, Artificial Intelligence, Power Electronic Control System, Grid Control, DC-DC Converter Control, Embedded Intelligence, Network Control System, Automatic Control and etc.
Articles 15 Documents
Search results for , issue "Vol 3, No 3 (2022): May" : 15 Documents clear
Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism Ha Quang Thinh Ngo; Minh Hoang Nguyen
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14585

Abstract

Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation.
A Systematic Review of Current Trends in Artificial Intelligence for Smart Farming to Enhance Crop Yield Mochammad Haldi Widianto; Mochamad Iqbal Ardimansyah; Husni Iskandar Pohan; Davy Ronald Hermanus
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.13760

Abstract

Current technology has been widely applied for development, one of which has an Artificial Intelligence (AI) applied to Smart Farming. AI can give special capabilities to be programmed as needed. In cooperation with agricultural systems, AI is part of improving the quality of agriculture. This technology is no stranger to being applied in basic fields such as agriculture. This smart technology is needed to increase crop yields for various regions by utilizing the current trends paper. This is necessary because less land is available for agriculture, and there is a greater need for food sources. Therefore, this systematic review aims to collect the current trends in AI studies for Smart Farming papers using the latest year features from 2018-2022. This paper is handy for researchers and industry in looking for the latest papers on research to enhance crop yields. The authors utilized Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) of 534 articles from IEEE, ACM, MDPI, IAES, and ScienceDirect. After going through a careful process, 67 papers were found that were judged according to the criteria. After the authors got some of the current trends, the author has discussed several factors regarding the results obtained to enhance crop yields, such as Weather, Soil, Irrigation, Unmanned Aerial Vehicle (UAV), Pest Control, Weed Control, and Disease Control.
Internet of Things Applications in Precision Agriculture: A Review N. S. Abu; W. M. Bukhari; C. H. Ong; A. M. Kassim; T. A. Izzuddin; M. N. Sukhaimie; M. A. Norasikin; A. F. A. Rasid
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14159

Abstract

The goal of this paper is to review the implementation of an Internet of Things (IoT)-based system in the precision agriculture sector. Each year, farmers suffer enormous losses as a result of insect infestations and a lack of equipment to manage the farm effectively. The selected article summarises the recommended systematic equipment and approach for implementing an IoT in smart farming. This review's purpose is to identify and discuss the significant devices, cloud platforms, communication protocols, and data processing methodologies. This review highlights an updated technology for agricultural smart management by revising every area, such as crop field data and application utilization. By customizing their technology spending decisions, agriculture stakeholders can better protect the environment and increase food production in a way that meets future global demand. Last but not least, the contribution of this research is that the use of IoT in the agricultural sector helps to improve sensing and monitoring of production, including farm resource usage, animal behavior, crop growth, and food processing. Also, it provides a better understanding of the individual agricultural circumstances, such as environmental and weather conditions, the growth of weeds, pests, and diseases.
Investigating and Optimizing the Operation of Microgrids with Intelligent Algorithms Ahmed Kadhim Hado; Bashar S. Bashar; Musaddak Maher Abdul Zahra; Reza Alayi; Yaser Ebazadeh; Iswanto Suwarno
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14772

Abstract

Microgrids need optimization to reduce economic problems and human losses. Scattered resources in power systems and microgrids have led to many environmental, economic and human, and animal losses. The most important part of these problems is related to voltage and frequency fluctuations when possible occurrences such as extreme load changes or errors in microgrids. These problems lead to microgrid collapse. Therefore, providing optimal solutions that can solve these challenges is essential. For this purpose, the present study has tried to provide a high-performance control structure in the time of internal and external disturbances based on short-term planning. The proposed approach is the use of an evolutionary neuro-fuzzy network. Perhaps the main reason for using this approach can be due to uncertainty in the distribution and distribution of loads in microgrids and power systems. Simulation has been performed in MATLAB and Simulink environments, and the results show that the optimal load distribution has been done evolution in microgrids.
Design of Ventilator with Gas Mixing, Tidal Volume, and Humidifier Parameters Hanifah Fajrin; Edi Susanto; Pamela Sandi Agus Kristianto; Fery Ferizal Herdiyana; Susilo Ari Wibowo
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14510

Abstract

On the ventilator, there are several important parameters, including gas mixing, which functions to mix oxygen with free air, the tidal volume serves to supply mixed air to the patient, respiratory rate is the frequency of breath given to the patient, and the humidifier functions to regulate the temperature of the air given to the patient. In this research, the author intends to design a ventilator device which uses a working system to open and close the valve to distribute air to the patient. This tool uses several sensors: oxygen sensor KE-25F3, flow sensor yf-s201, pressure sensor MPX 5700, and temperature sensor DS 12B20. The tidal volume (VT) has 3 setting values: 700 ml, 500 ml, and 300 ml. The test is carried out by opening and closing the valve. The respiratory rate has 2 settings of 15 and 20 breaths/minute. In addition, the humidifier has 3 setting modes 32, 35, and 40o C. From the test results, the highest error was obtained in the 300 ml tidal volume test, which was 7.20% and in the respiratory rate test, the highest error value was 0%. The test results with the oxygen concentration parameter obtained the largest error value of 0.1% at 100% oxygen concentration. In testing the temperature and humidity parameters, the largest average error was 2.40% at 40o C setting. So, it can be concluded that the tool is feasible to use because of the level of small error and still within the standard calibration tolerance of 15%.
Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer Mahmoud A. Mossa; Hamdi Echeikh; Alfian Ma’arif
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14632

Abstract

This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations.
Design and Implementation of LoRa-Based Forest Fire Monitoring System Yosi Apriani; Wiwin A. Oktaviani; Ian Mochamad Sofian
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14128

Abstract

One of the great disasters on earth is forest fires. Attempts to detect disaster events have been made with the help of monitoring technology. However, the problem is that the sensor is less responsive to detecting the presence of fire. Furthermore, sending information about fire incidents throughout the forest cannot use the existing communication platform. Therefore, we designed a forest fire monitoring system using LoRa. This technology is based on wireless which can transmit data across the forest. To detect the presence of fire, Arduino Uno is used as a microcontroller that regulates input from the AMG8833 sensor and GPS Ubox 6M. The experiment shows that the AMG8833 sensor is more sensitive in detecting the presence of fire as the catch range changes between 3 to 10 meters. In that distance range, hotspots were detected 19.25 oC to 122.5 oC when testing the sensor node is done. The monitoring system developed in this study demonstrated that sensor nodes and gateways could communicate up to 500 meters apart with a signal quality of -134 dBm. The best LoRa configuration mode for this communication capability is a Bandwidth of 250, a Code Rate of 4/5, and a Spread Factor of 10.One of the great disasters on earth is forest fires. Attempts to detect disaster events have been made with the help of monitoring technology. However, the problem is that the sensor is less responsive to detecting the presence of fire. Furthermore, sending information about fire incidents throughout the forest cannot use the existing communication platform. Therefore, we designed a forest fire monitoring system using LoRa. This technology is based on wireless which can transmit data across the forest. To detect the presence of fire, Arduino Uno is used as a microcontroller that regulates input from the AMG8833 sensor and GPS Ubox 6M. The experiment shows that the AMG8833 sensor is more sensitive in detecting the presence of fire as the catch range changes between 3 to 10 meters. In that distance range, hotspots were detected 19.25 oC to 122.5 oC when testing the sensor node is done. The monitoring system developed in this study demonstrated that sensor nodes and gateways could communicate up to 500 meters apart with a signal quality of -134 dBm. The best LoRa configuration mode for this communication capability is a Bandwidth of 250, a Code Rate of 4/5, and a Spread Factor of 10.
Magnetic Adhesion in Wall Climbing Robots using varied Electromagnet Arrangements J. Florence Gnana Poovathy; E. Sathish; Nirmala Paramanandham; Alapati Lakshmi Viswanath
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14748

Abstract

The improvements and innovations in the field of robotics have given a great opportunity to perform tasks that are hazardous for humans to perform. For example, robots can be used for working on high-storied buildings, inspection on ferromagnetic surfaces, painting and maintenance of buildings, surveillance purposes, etc., at the outset, to carry out any operation on vertical surfaces, which may be quite hazardous and time-consuming as well, wall climbing robots (WCRs) can be deployed. The method of adhesion determines the stability of the robot on the wall, be it smooth or coarse. Using magnets to bring about magnetic adhesion would be advantageous when the robot is maneuvered over iron or steel surfaces, typically, to clean boilers, etc., This paper presents the different ways of placements of the magnets, both permanent and electromagnets, in order to introduce adequate magnetic adhesion that would cease the robot from toppling down while encountering an obstacle. This work proposes two methods of arrangement of magnets: square and diamond. Four electromagnets when arranged in array formation with 5000 windings of thin copper coil, generated a magnetic field force of approximately 150 N when 50 A of current is passed. By and large, around 35 N to 40 N is the suction force that would be sufficient to stick the WCR of 2kg on the wall, while using a suction chamber instead of electromagnets. Other methods of placing the magnets such as square and diamond are studied and compared as well using FEMM. Hence arranging the 4 electromagnets in array formation gives an adhesion pressure sufficient to hold and move the WCR, over the vertical wall against gravity.
Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach Vadim Kramar; Oleg Kramar; Aleksey Kabanov
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14318

Abstract

The problem of mutual collisions of manipulators of a dual-arm multi-link robot (so-called self-collisions) arises during the performance of a cooperative technological operation. Self-collisions can lead to non-fulfillment of the technological operation or even to the failure of the manipulators. In this regard, it is necessary to develop a method for online detection and avoidance of self-collisions of manipulators. The article presents a method for detecting and avoiding self-collisions of multi-link manipulators using an artificial neural network by the example of the dual-arm robot SAR-401. A comparative analysis is carried out and the architecture of an artificial neural network for self-collisions avoidance control of dual-arm robot manipulators is proposed. The novelty of the proposed approach lies in the fact that it is an alternative to the generally accepted methods of detecting self-collisions based on the numerical solution of inverse kinematics problems for manipulators in the form of nonlinear optimization problems. Experimental results performed based on MATLAB model, the simulator of the robot SAR-401 and on the real robot itself confirmed the applicability and effectiveness of the proposed approach. It is shown that the detection of possible self-collisions using the proposed method based on an artificial neural network is performed approximately 10 times faster than approaches based on the numerical solution of the inverse kinematics problem while maintaining the specified accuracy.
Design and Optimization of PID Controller using Various Algorithms for Micro-Robotics System Ehab Seif Ghith; Farid Adel Aziz Tolba
Journal of Robotics and Control (JRC) Vol 3, No 3 (2022): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i3.14827

Abstract

Microparticles have the potentials to be used for many medical purposes in-side the human body such as drug delivery and other operations. This paper attempts to provide a thorough comparison between five meta-heuristic search algorithms:  Sparrow Search Algorithm (SSA), Flower Pollination Algorithm (FPA), Slime Mould Algorithm (SMA), Marine Predator Algorithm (MPA), and Multi-Verse Optimizer (MVO). These approaches were used to calculate the PID controller optimal indicators with the application of different functions, including Integral Absolute Error (IAE), Integral of Time Multiplied by Square Error (ITSE), Integral Square Time multiplied square Error (ISTES), Integral Square Error (ISE), Integral of Square Time multiplied by square Error (ISTSE), and Integral of Time multiplied by Absolute Error (ITAE). Every method of controlling was presented in a MATLAB Simulink numerical model, and LABVIEW software was used to run the experimental tests. It is observed that the MPA technique achieves the highest values of settling error for both simulation and experimental results among other control approaches, while the SSA approach reduces the settling error by 50% compared to former experiments. The results indicate that SSA is the best method among all approaches and that ISTES is the best choice of PID for optimizing the controlling parameters.

Page 1 of 2 | Total Record : 15