cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 6 Documents
Search results for , issue "Vol 10, No 2 (2010)" : 6 Documents clear
A Two-Step Fault Detection and Diagnosis Framework for Chemical Processes Lau Chee Kong; Che Rosmani; Che Hasan; Mohd Azlan Huzzain
ASEAN Journal of Chemical Engineering Vol 10, No 2 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1549.49 KB) | DOI: 10.22146/ajche.50083

Abstract

An effective process monitoring system serves as an early warning system for influences affecting the chemical plant and helps plant operator to devise remedial actions to mitigate the adverse effects. However, the design of such system presents challenges such as complex cause-effect correlations, imprecise process model and novelty identifiability. In this work, a two-step fault detection and diagnosis framework is presented. This framework utilizes boundary models developed from mass and energy balances for each section of the chemical plant. The fault detection step consists of a fuzzy inference system (FIS) to analyze the balances and identify the faulty section if the balances deviate from the normal boundary. Then, multiple adaptive neuro-fuzzy inference system (ANFIS) classifiers are constructed to diagnose the exact root causes of bad performance. The combination of boundary models and FIS provides fault isolation of the faulty plant section even when novel faults have occurred. Utilization of multiple ANFIS classifiers reduces the complexity of the networks and improves the proficiency of the process monitoring system. The proposed scheme is applied on a model of a large scale industrial process.
Intermittent Hot Air, Dehumidified Air, Heat Pump and Convective Cum Vacuum Microwave Drying Characteristics and Models Chung Lim Law; Chien Wha Chong; Adam Figiel
ASEAN Journal of Chemical Engineering Vol 10, No 2 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.425 KB) | DOI: 10.22146/ajche.50084

Abstract

An intermittent hot air dehumidified air dryer, a heat pump dryer and a convective vacuum microwave dryer was designed and manufactured to dried fruits product. Fresh apple, pear, ciku, papaya and mango were chosen as raw materials. The decreased of moisture ratio with drying time were modeled using semi-empirical Page equation. This model gave excellent fit for all experimental data with coefficient of determination higher than 0.9882. In addition, drying characteristics of fruits dried using convective vacuum microwave (C/VM), cyclic temperature profile (CTP), step-up temperature profile (STP) and heat pump (HP) dryers can be obtained from the analysis of model parameters. Drying characteristics versus moisture content curve were used to verify the parameter asymptotic value. Drying characteristics exhibited by various fruit samples in this study were first falling rate periods, second falling rate periods, increasing rate periods, constant rate periods and initial transient periods depending on the application of processing and tempering. The application of convective cum vacuum microwave (C/VM) in drying of fruits gave the shortest drying time compared to other drying methods. The effective diffusivity value obtained by C/VM was between 7.08 x 10-8 to 4.30 x 10-6 m/min, which is relatively high compared to fruits dried using other drying methods (2.07x 10-8 to 5.93 x 10-8 m2/min). The results revealed that the drying time for fruits undergone C/VM drying were 50% shorter compared to samples undergone CTP, STP and HP drying. Total drying time needed was between 310 to 490 minutes for drying of selected fruits using C/VM dryer.
Equilibrium in the Reactive Extraction of Aqueous Phenol Using Tributyl Phospate in n-Hexane Panut Mulyono; Sofiyah Sofiyah; Ahmad Muhajir Kahuripan
ASEAN Journal of Chemical Engineering Vol 10, No 2 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2245.018 KB) | DOI: 10.22146/ajche.50085

Abstract

Phenol is a hazardous chemical which usually contained in the wastewater from some industries, such as oil refineries, coal processing, and plastics. Phenol is dangerous substance to a microorganism although in low concentration in wastewater. According to the United State Environmental Protection Agency, the maximum concentration of phenol in wastewater is 1 ppm. This requirement is lower than the concentration of phenol in normal wastewater discharged from industries that is 100 to 1000 ppm. Phenolic substances are very difficult to be destroyed by oxidation in the present of microorganism. Chemical oxidation of phenolic substance using ozone or combination between the ozone and UV irradiation is impossible to handle huge amount of wastewater due to the expensiveness of ozone production and also its low solubility in water. The prospective method to recover of phenol from wastewater is reactive extraction in which phenol makes a complex with the extractant. This research investigated the equilibrium of the reactive extraction of phenol from water using tributyl phosphate (TBP) in n-hexane. An equilibrium model has been developed in this research and the laboratory experiments have been carried out. The parameters of the laboratory experiment are the initial concentration of TBP in n-hexane, and the extraction temperature. The experimental results showed that the higher the TBP concentration in n-hexane, the higher the amount of phenol which can be extracted to the organic phase. The correlation between the distribution coefficients (Kc) with the ration of TBP concentration (CoTBP) to the initial TBP concentration (CoiTBP) in n-hexane can be formulated by Kc=11.59-12.002(CoTBP)/(CoiTBP) with the sum of square of error of 10.87%. The lower the extraction temperature, the higher the amount of phenol extracted to the organic phase. The correlation between the distribution coefficients with the temperature (T) can be approached by Kc=1505.45(1/T)-4.06 with the sum of square of error of 2.63%. The value of distribution coefficient of physical equilibrium (Kp) decreases with the increase of temperature, meanwhile the value of the equilibrium constant of solvation reaction (Kr) is increase with increasing the temperature. The expression of Kr as a function of temperature is Kr=-2.8636(1/T)+0.0133 with the sum of square of error of 0.04%.
Synthesis of Spherical Silica by Sol-Gel Method and Its Application as Catalyst Support Anirut Leksomboon; Bunjerd Jongsomjit
ASEAN Journal of Chemical Engineering Vol 10, No 2 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (862.311 KB) | DOI: 10.22146/ajche.50086

Abstract

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</
Influence of Water Content on Biofiltration Performance Daisy B Badilla; Peter A Gostomski; Maria Lourdes P Dalida
ASEAN Journal of Chemical Engineering Vol 10, No 2 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (137.155 KB) | DOI: 10.22146/ajche.50087

Abstract

In biofiltration, contaminants in a gas stream are transferred into a biofilm on the filter bed medium and are metabolized by the microorganisms. Water is essential for microbial growth/activity and for transport of nutrients. In both full-scale and laboratory-scale systems, the water content of the medium is difficult to control. In this study, a biofilter, with rigorous water content control and internal gas recycle, was used to determine the influence of the water content on the degradation of toluene. Soil was used as the medium for treating toluene-contaminated air at an average inlet concentration of 263 ppm and a flow rate of 21 ml min-1. Through a water retention curve, gravimetric water content was related to matric potential. Results showed that lowering the water content from 79 to 48% (dry weight) or -20 to -400 cm H2O matric potential decreased the elimination capacity (EC) by 42% (29.8 to 17.3 g m-3h-1). Wetting the medium by increasing the matric potential from -400 to -10 cm H2O increased the elimination capacity to 43.9 g m-3h-1. However, further increase of the matric potential from -10 to -5 cm H2O decreased the elimination capacity by 57% (43.9 to 19.0 g m-3 h-1). Thus, this study suggests the soil water content should be controlled at about 96% (dry weight) or a matric potential of -10 cm H2O and the maximum elimination capacity is restricted to a narrow water content/matric potential. This narrow range impacts on the operation of full-scale biofilters as traditional techniques for water content control would make maintaining this range difficult.
2,6-Dichloro-4-nitroaniline –loaded Electrospun Cellulose Acetate Fiber Mats and Their Release Characteristics Patcharaporn Thitiwongsawet; Paweena Ouykul; Akkarin Khaoroppan
ASEAN Journal of Chemical Engineering Vol 10, No 2 (2010)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (321.66 KB) | DOI: 10.22146/ajche.50088

Abstract

Mats of cellulose acetate (CA) nanofibers containing 2,6-dichloro-4-nitroaniline (DCNA) were successfully fabricated by electrospinning from the neat CA solution (17% w/v in 2:1 acetone/dimethylacetamide) containing DCNA in various amounts (i.e. 5-15 wt. % based on the weight of CA). The morphological appearance of both the neat and the DCNA-loaded electrospun CA fibers were smooth and the incorporation of DCNA in the neat CA solution did not affect the morphology of the resulting fibers. The average diameters of the neat and the DCNA-loaded electrospun CA fibers ranged between 241-320 nm. The integrity of the as-loaded DCNA in the DCNA-loaded CA fiber mats was intact as verified by the 1H-nuclear magnetic resonance spectroscopic method. The amount of water retention, the amount of weight loss, and release characteristics of the DCNA-loaded CA fiber mats and the DCNA-loaded as-cast films in distilled water at 30°C were studied. The release characteristics were investigated by the total immersion method. The DCNA-loaded CA fiber mats exhibited greater amount of water retention, weight loss, and DCNA released than the DCNA-loaded as-cast films.

Page 1 of 1 | Total Record : 6