cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 15 Documents
Search results for , issue "Vol 22, No 2 (2022)" : 15 Documents clear
The Effect of Power on Nitrate Synthesis and The Emission Intensities of Reactive Species Using Anodic Plasma Electrolysis Harianingsih Harianingsih; Nelson Saksono; Eva Fathul Karamah; Zainal Zakaria
ASEAN Journal of Chemical Engineering Vol 22, No 2 (2022)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.76790

Abstract

Nitrates are used as fertilizer to fulfill nutrients for plants. Anodic plasma electrolysis technology can be an effective and environmentally friendly solution in nitrogen fixation into nitrate compounds. This research aimed to determine the effect of controlling voltage and power in nitrate synthesis using plasma electrolysis with air as the raw material injected at the anode. The material used is an electrolyte solution of 0.02 M K2SO4, the electrodes used are in the form of tungsten and stainless steel, and a nitrate reagent is used for the nitrate test. The results of the study showed that at 400 W, the optimal rate was 0.8 L men-1 with 1889 mg L-1 of nitrate formed. While at 500 W and 600 W, the optimal rate of 1 L men-1 with nitrate formed was 2213 mg L-1 and 2453 mg L-1. The emission intensities of reactive species N, N2*, N2+,•OH, •H, and •O at an optimal rate of 0.8 L men-1 400 W 700 V in 20139 au, 28540 au, 18023 au, 30863 au, 12547 au, 49800 au. The addition of air injection will increase the oxygen input into the plasma zone, which can produce reactive species •O and nitrogen produces reactive species N, N2*, N2+ forms NO. The formed NO compounds can be oxidized to NO2, and the reaction between NO2 and reactive species •OH forms nitrates. 
Characteristics of Rapid Visco Analyzer Carrageenan Extract with Enzymatic Pretreatment of Kappaphycus striatum Hendrawan Laksono; Citra Kusumaning Dyah; Renny Primasari Gustia Putri; Maya Soraya; Heri Purwoto
ASEAN Journal of Chemical Engineering Vol 22, No 2 (2022)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.76994

Abstract

Carrageenan is a polysaccharide compound extracted from red seaweed and is widely used by food, cosmetic, and advanced materials industries because of its good properties as an environmentally friendly stabilizer. Carrageenan extraction generally uses alkaline treatment for one full day, where the treatment is to obtain carrageenan quality with good gel characteristics. The use of cellulase enzymes is thought to accelerate the desulfuration process of seaweed, where cellulase enzymes are used to break down cellulose in seaweed cell walls. By using a rapid visco analyzer (RVA), carrageenan was tested to see the pattern and viscosity value. This study aims to determine the effect of enzymatic pretreatment on the profile of carrageenan with a shorter alkalization process compared to the alkalization commonly used by the industry. The results showed that enzymatic treatment before KOH alkalization would produce a carrageenan profile with a viscosity value of 272-360 cP, whereas the NaOH alkalization only reached 19-24 cP. The results of the test using RVA showed that the addition of an enzymatic process could change the physicochemical properties, such as viscosity and gel point of the carrageenan alkalinized with KOH. However, there was no significant difference in the properties when treated by alkalization using NaOH, which can be described from the value of the gelling point of carrageenan treated by cellulose enzyme. Adding enzymes to KOH will accelerate the gelation process, which occurs at an average temperature of 42.78oC. Meanwhile, carrageenan without enzymatic addition has an average gelation value of 37.48oC.
Characterization of Cellulose Acetate Membrane at Different Thicknesses on Sucrose Concentration by Forward Osmosis Aida I. Mohamad Idris; Siti Mazlina Mustapa Kamal; Alifdalino Sulaiman; Rozita Omar; Munira Mohammad
ASEAN Journal of Chemical Engineering Vol 22, No 2 (2022)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.77350

Abstract

Forward osmosis (FO) requires a specific membrane structure for applications like juice concentration. The phase inversion method was used to make cellulose acetate (CA) FO membranes. The solvents used were acetone and 1,4-dioxane. Additives included polyvinylpyrrolidone (PVP), methanol, and maleic acid were used in the preparation of CA membrane, which make it easier to improve a FO membrane's permeability. The performance of fabricated FO membrane and their  morphology were evaluaed with different casting thicknesses of 150, 200, and 250 µm. Experiment works begins with an hour of membrane flux testing, deionized water was used as feed solution and 1 M NaCl as draw solution. The membrane was then used to concentrate 0.5 M sucrose with NaCl for 240 minutes (2 M). Contact angle, porosity, and scanning electron miscroscopy (SEM) were used to characterize membrane properties and morphology. High water flux (2.25 L/m2hr) and high porosity (75.86%) were found at 200 µm casting thickness. Water permeability of sucrose concentration at 200 µm casting thickness had the highest flux (2.39 L/m2hr). The results also show that flux values vary with membrane thickness. All membranes were hydrophilic with contact angles below 90°.  A 200 µm casting thickness produces a membrane with smooth and evenly distributed pores, according to morphology analysis. Structural parameter (S) values had a proportional relationship with the FO membrane thickness, which thinner membrane potentially reduces the internal concentration polarization (ICP).
Extraction of Rutin from the Leaf of Male Carica papaya Linn. using Microwave-Assisted and Ultrasound-Assisted Extractive Methods See Khai Chew; Wen Hui Teoh; Sok Lai Hong; Rozita Yusoff
ASEAN Journal of Chemical Engineering Vol 22, No 2 (2022)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.77375

Abstract

Açıkel, Ü., Erşan, M., & Sağ Açıkel, Y. 2010. Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food and Bioproducts Processing, 88(1), 31-39. doi: https:// doi.org/10.1016/j.fbp.2009.08.003Carniel, N., Dallago, R. M., Dariva, C., Bender, J. P., Nunes, A. L., Zanella, O., . . . Luiz Priamo, W. 2017. Microwave‐assisted extraction of phenolic acids and flavonoids from Physalis angulata. Journal of Food Process Engineering, 40(3), e12433.Chahyadi, A., & Elfahmi. 2020. The influence of extraction methods on rutin yield of cassava leaves (Manihot esculenta Crantz). Saudi pharmaceutical journal, 28(11), 1466-1473. doi: https:// doi.org/10.1016/j.jsps.2020.09.012De Luna, S. L. R., Ramírez-Garza, R., & Saldívar, S. O. S. 2020. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. The Scientific World Journal, 2020.Ferreira, S. C., Bruns, R., Ferreira, H., Matos, G., David, J., Brandão, G., . . . Souza, A. 2007. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186.He, Q., Li, Y., Zhang, P., Zhang, A., & Wu, H. 2016. Optimisation of microwave-assisted extraction of flavonoids and phenolics from celery (Apium graveolens L.) leaves by response surface methodology. Czech Journal of Food Sciences, 34(4), 341-349.Hyun, S. B., Ko, M. N., & Hyun, C.-G. 2021. Carica papaya leaf water extract promotes innate immune response via mapk signaling pathways. Journal of Applied Biological Chemistry, 64(3), 277-284.Khadam, S., Afzal, U., Gul, H., Hira, S., Satti, M., Yaqub, A., . . . Gulfraz, M. 2019. Phytochemical screening and bioactivity assessment of leaves and fruits extract of Carica papaya. Pakistan journal of pharmaceutical sciences, 32(5).Latiff, N., Ong, P. Y., Abdullah, L. C., Abd Rashid, S. N. A., Fauzi, N. A. M., & Amin, N. A. M. 2021. Ultrasonic-Assisted Extraction (UAE) for Enhanced Recovery of Bioactive Phenolic Compounds From Cosmos Caudatus Leaves.Li, Y., Radoiu, M., Fabiano-Tixier, A.-S., & Chemat, F. 2013. From Laboratory to Industry: Scale-up of Microwave-Assisted Reactors, Quality and Safety Consideration for Microwave-Assisted Extraction. In (pp. 207-229).Ling, Y. Y., Fun, P. S., Yeop, A., Yusoff, M. M., & Gimbun, J. 2019. Assessment of maceration, ultrasonic and microwave assisted extraction for total phenolic content, total flavonoid content and kaempferol yield from Cassia alata via microstructures analysis. Materials Today: Proceedings, 19, 1273-1279.Liu, H.-L., Lan, Y.-W., & Cheng, Y.-C. 2004. Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochemistry, 39(12), 1953-1961. doi: https://doi.org/10.1016/j.procbio.2003.09.018Liu, Y., Wei, S., & Liao, M. 2013. Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Industrial Crops and Products, 49, 837-843.Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., . . . Zheng, B. 2017. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Industrial Crops and Products, 107, 546-557.Machado, I., Faccio, R., & Pistón, M. 2019. Characterization of the effects involved in ultrasound-assisted extraction of trace elements from artichoke leaves and soybean seeds. Ultrasonics Sonochemistry, 59, 104752.Maisarah, A., Amira, N. B., Asmah, R., & Fauziah, O. 2013. Antioxidant analysis of different parts of Carica papaya. International Food Research Journal, 20(3), 1043.Martino, E., Ramaiola, I., Urbano, M., Bracco, F., & Collina, S. 2006. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction. Journal of Chromatography A, 1125(2), 147-151.Ming, R., Yu, Q., & Moore, P. 2007. Sex determination in papaya. Seminars in cell & developmental biology, 18, 401-408. doi:10.1016/j.semcdb.2006.11.013Mohammadpour, H., Sadrameli, S. M., Eslami, F., & Asoodeh, A. 2019. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Industrial Crops and Products, 131, 106-116. doi: https://doi.org/10.1016/j.indcrop.2019.01.030Nor, M., Manan, Z. A., Mustaffa, A., & Lee, S. 2017. Solubility prediction of flavonoids using new developed UNIFAC-based model. Chemical Engineering Transactions, 56, 799-804.Oreopoulou, A., Tsimogiannis, D., & Oreopoulou, V. 2019. Extraction of polyphenols from aromatic and medicinal plants: an overview of the methods and the effect of extraction parameters. Polyphenols in plants, 243-259.Poureini, F., Mohammadi, M., Najafpour, G. D., & Nikzad, M. 2020. Comparative study on the extraction of apigenin from parsley leaves (Petroselinum crispum L.) by ultrasonic and microwave methods. Chemical Papers, 74(11), 3857-3871.Rabska, M., Pers-Kamczyc, E., Żytkowiak, R., Adamczyk, D., & Iszkuło, G. 2020. Sexual Dimorphism in the Chemical Composition of Male and Female in the Dioecious Tree, Juniperus communis L., Growing under Different Nutritional Conditions. Int J Mol Sci, 21(21). doi:10.3390/ijms21218094Radoiu, M., Splinter, S., & Popek, T. 2019. Continuous industrial-scale microwave-assisted extraction of high-value ingredients from natural biomass. Paper presented at the AMPERE 2019. 17th International Conference on Microwave and High Frequency Heating.Rasul, M. G. 2018. Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages. Int J Basic Sciences App Computing, 2(6), 10-14.Sarker, M. M. R., Khan, F., & Mohamed, I. N. 2021. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Frontiers in pharmacology, 12, 610912-610912. doi:10.3389/fphar.2021.610912Satari, A., Ghasemi, S., Habtemariam, S., Asgharian, S., & Lorigooini, Z. 2021. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evidence-Based Complementary and Alternative Medicine, 2021, 9913179. doi:10.1155/2021/9913179See, T. Y., Tee, S. I., Ang, T. N., Chan, C.-H., Yusoff, R., & Ngoh, G. C. 2016. Assessment of Various Pretreatment and Extraction Methods for the Extraction of Bioactive Compounds from Orthosiphon stamineus Leaf via Microstructures Analysis. International Journal of Food Engineering, 12(7), 711-717. doi:doi:10.1515/ijfe-2016-0094Ying, Z., Han, X., & Li, J. 2011. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry, 127(3), 1273-1279.Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese medicine, 13(1), 1-26. 
Industrial Application of Rice Husk as an Alternative Fuel in Cement Production for CO2 Reduction Ranoe Bramantiyo; Erna Lestianingrum; Rochim Bakti Cahyono
ASEAN Journal of Chemical Engineering Vol 22, No 2 (2022)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ajche.77483

Abstract

The cement industry generally spends about 30-40% of production costs to provide energy for production. It forces the cement industry to look for cheaper and widely available alternative energy sources to increase its competitiveness. The dominance of fossil fuels poses another problem for the cement industry in the form of high CO2 emissions. To overcome this, PT Indocement Tunggal Prakarsa (ITP) Tbk, Palimanan Unit, is committed to continuously looking for alternative energy sources by utilizing rice husks in the suspension preheater unit. This study aims to evaluate the performance, especially the reduction of CO2 emissions and the economic benefits of energy substitution applications using rice husks. Based on the calculation in 2020, there will be an increase of 37% in 2021, and the total energy of rice husks will reach around 1,996,671 GJ. It is equivalent to using fossil fuel coal of approximately 106,450 tonnes. The contribution of rice husks to primary energy consumption seems to continue to increase yearly. A significant increase occurred between 2020 - 2021, and the contribution of rice husks reached 23%. Rice husks usage has reduced CO2 emissions by almost 220,000 tons of CO2e and brought production cost benefits to around 40 billion by 2021. Therefore, the substitution of coal fuel using rice husk has proven to be effective in reducing CO2 emissions in the cement production process. By still paying attention to the reliability of the process and the quality of the cement products produced, these efforts can be continuously encouraged to realize cement products that are more environmentally friendly. 

Page 2 of 2 | Total Record : 15