cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 18 Documents
Search results for , issue "Vol 7, No 1 " : 18 Documents clear
Sludge Composting: A Case Study on Palm Oil Mill Sludge (POms) A. Y. Zahrim; A. R. Rakmi; M. S. Kalil
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (93.444 KB) | DOI: 10.22146/ajche.50132

Abstract

Current disposal technology for palm oil mill sludge (POMS) creates problems such as sludge flooding insects, and bad odor mainly during the rain season. This study we present in-vessel composting system as an alternative process for disposal of POMS. Maximum temperature achieved for reactor was about 400C. It can be verified that the composting process followed first order kinetic equation with degradation rate k = 0.014 day-1 with maximum degradation rate of 51%. POMS compost has potential to improve performance of C. citratus growth in sandy soil that usually lacks nutrients and has poor soil structure.
Preparation and Activity of Precipitated Ni-MgO/Al2O3 Catalysts for the Partial Oxidation of Methane Luis F. Razon; Carlito M. Salazar; Hiroo Niiyama; Long The Nam Doan
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (116.516 KB) | DOI: 10.22146/ajche.50133

Abstract

The effect of catalyst preparation methods, NiO/MgO molar ratio and reaction temperature on the performance of Ni-MgO catalysts supported on Al2O3 in the partial oxidation of methane to syngas were investigated in a fixed-bed flow reactor. Three catalyst preparation methods (all slight variants of the precipitation method) produced comparable results in CH4 conversion, CO and H2 selectivities. Energy Dispersive X-Ray (EDX) analysis and the color of the catalysts after reaction showed that catalysts produced by simultaneous dissolution of the nickel and magnesium salts may have better carbon deposition resistance. NiO/MgO molar ratio significantly affected the performance of the catalyst. When the NiO/MgO ratio decreased, activity decreased. At a NiO/MgO molar ratio of 1/2 and a reduction temperature of 850°C, CH4 conversion and CO selectivity increased when reaction temperature increased while H2 selectivity remained almost the same. The catalyst gave excellent activity and remained stable after 5h time-on-stream.
Effects of Steam Injection Flow in Burner and Outside Water Tube to the Increasing of Boiler Temperature M. Djoni Bustan
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (57.735 KB) | DOI: 10.22146/ajche.50134

Abstract

Energy is an expensive basic need for human life, especially energy from fossils, such as crude oil, gas, and coal. In an oil refinery factory or electrical generator unit, where heat is most dominantly utilized, the boiler is used to generate steam. The main problem in a boiler is its uncompleted combustion process because of the incomplete ratio of air–fuel. This problem is caused by the addition of deposits or sealing inside and outside of the tube fire heater which will reduce the performance of fired heater. The objective of this research is to study the effect of steam flow variation on burner and tubing for increasing heat and temperature as well as the quality of steam. This research used a package boiler B&W series 1986 model which can be seen at an oil refinery factory or steam power electrical generator unit in Indonesia. This package boiler has 50kg/hours steam production capacity, qualified superheated steam, maximum pressure and temperature at 7kgs/cms2 and 700oC. Quantitatively, the achievable heat efficiency which corresponded to the temperature increase caused by the steam injection is 41.25% and the specific enthalpy is 12.07%.
Phase Equilibrium Study in Supercritical Fluid Extraction of Ethanol to Octane Mixture Using CO2 R. Davarnejad; K. M. Kassim; A. Zainal; Suhairi A. Sata
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (148.673 KB) | DOI: 10.22146/ajche.50135

Abstract

Solubility data was measured for carbon dioxide with ethanol and octane using a phase equilibrium loading re-circulating high-pressure type apparatus at a pressure up to 100.75 bar and a temperature of 348.15K for ethanol and octane mixture involved with 25% ethanol and 75% octane. Experimental data was compared with the calculated regular solution theory data. A procedure is employed to each phase by applying activity coefficient expressions based on regular solution theory. Calculations along these lines are described and the physical bases for applying this method under the relevant conditions are discussed. The regular solution theory approach has been found to be encouraging for the prediction of phase equilibria solubilities though the interaction parameters must be regarded as pressure dependent.
Study of the Peptizability of Boehmite and Its Application for the Formation of γ-Al2O3 in Spherical Shape Tran Dai Lam; Pham Thanh Huyen; Nguyen Han Long
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (92.596 KB) | DOI: 10.22146/ajche.50136

Abstract

This paper shows the results of the peptizability of boehmite and its application for the formation of γ-Al2O3 in spherical shape. The obtained γ-Al2O3 in spherical shape have high mechanical strength and high surface area. The water vapor adsorption ability of sphere of γ-Al2O3 has also been determined. The γ-Al2O3 in spherical shape can adsorb moisture up to 65% of their weight.
Kinetic Effects as the Balancing Factor on α-Cellulose Conversion into D-Glucose in Hydrolysis Process of Pt. Tanjung Enim Lestari Solid Waste Using Oscillated Flow Sri Haryati
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (315.715 KB) | DOI: 10.22146/ajche.50137

Abstract

A solution to find the best alternative to minimize industry pollution is very necessary especially in pulp and paper manufacturing. One of the alternatives is using waste as feed that will be converted into chemical compound and fuel. Solid waste from pulp and paper manufacturing that contains lignocellulose which is a biomass has potency to be processed for chemical compounds, such as sugar solution (D-glucose), Furfural, and Acetone-Buthanol-Ethanol (ABE). The solid waste in this research is hydrolyzed generating D-glucose solution. The purpose of this research is to study the variables of α-cellulose conversion kinetics as the balancing factor between α-cellulose conversion and energy and mass consumptions. The value of energy and mass consumptions, along with temperature and acid concentration, can be minimized to get higher conversions. Two processes in this method are the preparation and the hydrolyses of α-cellulose by using delignified feed. The hydrolyses process occurs in the Oscillated Reactor Column. The highest conversion was about 50-55% at 10% of sulfic acid concentration.
The Effect of the Presence of Cu2+ and Fe3+ Metal Ions on the Sorption of Mercuric Ion (Hg2+) by Sargassum cristaefolium Rochelle T. Alcantara; Dahlia C Apodaca; Manuel R. De Guzman
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (149.869 KB) | DOI: 10.22146/ajche.50138

Abstract

Previous studies have indicated that the seaweed Sargassum cristaefolium is capable of binding with metal ions. The metal sorbing property of S. cristaefolium suggests its possible participation in the removal of Hg2+ ions in water and wastewater. However, the potential application of S. cristaefolium for environmental remediation and precious metals recovery depends on the understanding of the other factors that could play a role in the sorption process. This study illustrates the effects of some variables, such as pH and temperature, and that of the presence of other metal ions on the sorption process involving the binding of Hg2+ ions to S. cristaefolium. The uptake of Hg2+ ion was found to be affected by the initial concentration and the charge densities of the competing ions. Cu2+ ion shows a stronger affinity to Sargassum in the three metal systems of Hg2+, Cu2+, and Fe3+ ions. On the other hand, results show that Fe3+ ion is not a potential competitor for binding sites considering that no Fe3+ ion uptake by Sargassum has been observed.
Degradation Behavior of Carbon Fiber Reinforced Plastic (CFRP) in Microwave Irradiation Nguyen Nguyen; Phuong Ngoc Diem; Susan A. Roces; Florinda T. Bacani; Masatoshi Kubouchi; Sakai Tetsuya; Piyachat Yimsiri
ASEAN Journal of Chemical Engineering Vol 7, No 1 & 2 (2007)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (185.844 KB) | DOI: 10.22146/ajche.50139

Abstract

Carbon fiber reinforced plastic (CFRP) composites are being used increasingly not only in strengthening structures of civil infrastructures and aerospace or automotive industries but also in many applications such as in medical fields or chemical plants. The present study relates to resin compositions having beneficial physical and mechanical properties, which may include improved resistance to delamination. This study focused on the different behaviors of CFRP composites when subjected to microwave irradiation. Based on the results of the 3-point bending test and SEM images, the delamination tendencies of breaking the CFRP under microwave were discussed. The results can be summarized as follows: (1) CFRP can be degraded under microwave irradiation; (2) two delamination tendency curves of CFRP by microwave irradiation were observed; (3) only the bending strength values of CFRP decreased with increasing microwave power and residence time; and, (4) the degradation of CFRP by microwave was limited.

Page 2 of 2 | Total Record : 18