cover
Contact Name
Laelatul Qodaryani
Contact Email
jsdlbbsdlp@gmail.com
Phone
+6285641147373
Journal Mail Official
jsdlbbsdlp@gmail.com
Editorial Address
Balai Besar penelitian dan Pengembangan Sumberdaya Lahan Pertanian (BBSDLP) Jln. Tentara Pelajar no 12, kampus Penelitian Pertanian Cimanggu, Ciwaringin, Bogor Tengah, Kota Bogor, Jawa Barat 16114
Location
Kota bogor,
Jawa barat
INDONESIA
Jurnal Sumberdaya Lahan
Core Subject : Agriculture,
Jurnal ini memuat artikel tinjauan (review) mengenai hasil-hasil penelitian yang telah diterbitkan, dikaitkan dengan teori, evaluasi hasil penelitian lain, dengan atau mengenai kebijakan. Ruang lingkup artikel tinjauan ini meliputi bidang: tanah, air, iklim, lingkungan pertanian, perpupukan dan sosial ekonomi sumberdaya lahan.
Articles 4 Documents
Search results for , issue "Vol 4, No 2 (2010)" : 4 Documents clear
Land Capability Classification For Land Evaluation : A Review SANTUN R.P SITORUS
Jurnal Sumberdaya Lahan Vol 4, No 2 (2010)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (114.661 KB) | DOI: 10.21082/jsdl.v4n2.2010.%p

Abstract

Land capability classification has been used for land evaluation for various purposes in many countries in the world. Since developed by the United States Department of Agriculture as a part of the programme to control soil erosion, the land capability classification has been further developed by a number of authors in many countries to suit their requirements. Of the numerous land capability classification have been published, fourteen are selected to be reviewed. The results shows that the aims of the various land capability classification schemes are generally similar: to evolve methodology whereby land may be evaluated for a particular land use purposes. Most of the methodologies were designed mainly for evaluating the capability of land for agriculture, either in narrow (specific) or in broad terms (including forestry, pasture, etc). Three methods of evaluation of data can be identified: Firstly, descriptive methods whereby capability classes or other categories are descriptive solely in words. Secondly, rating, grading or indexing system whereby each attribute is assigned a rate, grade or index and the capability class or other category is defined in terms of the sum of the weighted scores. Thirdly, quantitative methods whereby the relationships between variables are defined in terms of an equation used to obtain a score or index which defines the capability class or other categories. The capability methods also vary both as hierarchical systems and in terms of the number of categories used. They are also vary in terms of scale, and some do not even specify the scales used. Although substantial differences are found among the methodologies in terms of their purposes and detailed procedures, these are all broadly similar in terms of the general approach and activities involved.
SOIL BIOLOGY CONTRIBUTION ON AGRICULTURAL LAND SUITABILITY EVALUATION OF WET TROPICAL MEGABIODIVERSITY REGIONS GITOSUWONDO, SUBOWO; SANTOSA, EDI; ANAS, ISWANDI
Jurnal Sumberdaya Lahan Vol 4, No 2 (2010)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (162.297 KB) | DOI: 10.21082/jsdl.v4n02.2010.%p

Abstract

Indonesia is in the region "wet tropical megabiodiversity" it would need to complete the system  for agricultural land suitability evaluation in accordance with real conditions, thus increasing the value-added resources optimally and sustainable and accountable production investment. Soil organisms as a component of production support can act as an agent of energy and nutrient cycling in the soil, improving soil physical properties, and controlling pests and disease. For that soil, biological parameters that need to be considered in evaluating the suitability of land that already exist include: N-fixing or P-solubilizing bacteria groups that live symbiosis and free-living, the fungi solubilizing P and soil organic matter decomposition groups, BGA fixing and free-living N symbiotic groups, fauna groups are able to conserve soil organic matter and improve soil physical properties. Important steps that need to be done in the evaluation of land cover inventory of soil biological populations and its role on the growth of crops, and evaluate the suitability of the soil biological parameters of the functional value of commodity options.
FARM SCALE NITROGEN BALANCES FOR TERRACED PADDY FIELD SYSTEMS SUKRISTIYONUBOWO, .; LIANG, GIJS DU
Jurnal Sumberdaya Lahan Vol 4, No 2 (2010)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (221.752 KB) | DOI: 10.21082/jsdl.v4n02.2010.%p

Abstract

Nitrogen balance at farm scale is not only important to refine the site specific nitrogen fertiliser application rate, but also to estimate how much nitrogen fertiliser should be provided every planting season at district level. The nitrogen fertiliser stock for the district can be calculated by multiplying the total planting areas with nitrogen fertiliser rate per hectare. The aims were to evaluate the nitrogen balance of terraced paddy field systems under conventional farmer practices and improved technologies during the wet season 2003-04 and dry season 2004 and to predict how much nitrogen fertiliser should be provided in every planting season for wetland cultivation in the Semarang district. The nitrogen input-output assessments were carried out in terraced paddy fields for the conventional farmer practices (CFP), conventional farmer practices + rice straw (CFP+RS), improved technology (IT), and improved technology + rice straw (IT+RS) treatments. Balances were computed based on the differences between input and output. Nitrogen originating from fertiliser (IN-1), recycled rice straw (IN-2), irrigation (IN-3), and precipitation (IN-4) were grouped as input. Nitrogen removal by rice grains (OUT-1) and rice straw (OUT-2) was considered as output. The input-output analyses showed negative nitrogen balances for all the treatments, both in the wet season 2003-04 and the dry season 2004. The more nitrogen deficit was observed when the nitrogen volatilisation was considered. The nutrient inputs, particularly coming from inorganic fertilisers, were not sufficient to replace the nitrogen removed by rice grains and straw. The application of only 50 kg of urea/ha/season with and without returning rice straw was not enough to reach the optimal yield and should be left out. To balance the nitrogen deficit and to improve cultural practices in wetland rice farming especially terraced paddy field system, about 200 -250 kg urea/ha/season is recommended when the ammonia volatilisation is not considered, where as when the ammonia volatilisation is taken into account about 250-300 kg urea/ha should be added. When the rice yield of 5.73 t/ha is targeted as reached in the IT+RS treatment even higher and the planting areas in the Semarang district is about 24.833 ha for the wet season, the amount of urea should be provided will be about 4.97-6.21 million tons/season/district, meanwhile for the dry season when about 18,440 ha wetland rice is expected to be cultivated is about 4.61 to 5.53 million tons urea/season/district should be available.
Contribution of Earthworms to Increase Soil Fertility and Soil Organism Activities EA KOSMAN; SUBOWO GITOSUWONDO
Jurnal Sumberdaya Lahan Vol 4, No 2 (2010)
Publisher : Indonesian Center for Agriculture Land Resource Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21082/jsdl.v4n2.2010.%p

Abstract

Upland in the wet tropical region is dominated by acid soils, low organic matter content, and compacted subsoil layer (especially argillic horizone). The compacted soil inhibit penetration of plant roots and surface water infiltration and increase surface runoff and soil erosion, and low soil productivity. Soil fertility restoration through mechanical processing is difficult to be done, beside damaging the plant roots but also increasing soil erosion. Empowerment of earthworms in their life cycle can make a hole in the soil (burrower), prevent soil compaction, improve soil aeration, spreading organic matter and organic matter inhibits the rate of depreciation of land, and increase soil biological activity, and further can improve soil fertility without disrupting growth plants.

Page 1 of 1 | Total Record : 4