cover
Contact Name
bernadeta subandini astuti
Contact Email
bernadeta.palguno@gmail.com
Phone
+6222-7213793
Journal Mail Official
ijog@bgl.esdm.go.id
Editorial Address
Jl. Diponegoro No. 57 Bandung, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal on Geoscience
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher. This Journal publishes 3 numbers per year at least 15 articles. It is a challenge for the management of the journal to remain survive and at the same time continuously maintain its quality and credibility in spite of those various constraints. Fortunately, this effort is strongly supported by the Geological Agency of Indonesia, as the publisher and which financially bear the journal. Last but not least the journal is also managed by senior geologist of various subdisciplines from various countries who are responsible for its quality.
Articles 5 Documents
Search results for , issue "Vol 1, No 4 (2006)" : 5 Documents clear
Perbandingan karakteristik lingkungan pengendapan, batuan sumber, dan diagenesis Formasi Lakat di lereng timur laut dengan Formasi Talangakar di tenggara Pegunungan Tigapuluh, Jambi Heryanto, Rachmat
Indonesian Journal on Geoscience Vol 1, No 4 (2006)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1831.689 KB) | DOI: 10.17014/ijog.1.4.173-184

Abstract

http://dx.doi.org/10.17014/ijog.vol1no4.20061The Central Sumatera Basin and the Jambi Subbasin is separated by the Tigapuluh High. During Late Oligocene – Middle Miocene, the Lakat Formation was deposited in fl uvial, fl ood plain associated with swamp, and tidal environments, whereas the Jambi Subbasin was occupied by the deposition of the Talangakar Formation in fl uvial and deltaic environments. The provenance of both formations was derived from the Tigapuluh and Barisan Mountain Highs. Diagenesis stage of the Talangakar Formation is higher (Mesogenetic mature B) than that of the Lakat Formation (Mesogenetic immature). This is because the Talangakar Formation was deposited within an unstable basin formed by horst, and graben structures which were still active during the deposition of the formation. On the other hand, the Lakat Formation was deposited in a more stable basin.    
Karakteristik kimiawi air danau kawah Gunung Api Kelud, Jawa Timur pasca letusan tahun 1990 Kadarsetia, Eka; Primulyana, Sofyan; Sitinjak, Pretina; Saing, Ugan Boyson
Indonesian Journal on Geoscience Vol 1, No 4 (2006)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (601.78 KB) | DOI: 10.17014/ijog.1.4.185-192

Abstract

http://dx.doi.org/10.17014/ijog.vol1no4.20062Kelud is a strato type volcano characterized by phreatomagmatic and magmatic eruptions. Since last eruption in 1990, the volcano has showed no-more signifi cant volcanism. Currently, there is an opened westward crater lake as a remained eruption crater containing meteoric water and volcanic gases condensate generated from subsurface.Analysis result of lake water exhibits that its chemical composition was fl uctuated due to an infl uence of factors such as seasons, rates of volcanism activity and reactivity of internal chemical elements within the lake water.The volume of lake water increases during the wet season and experiences dilution to make declination of chemical components within the water. Temperature of the lake water increases as well as volcanic intensity, simultaneously to make addition of dissolved chemical compounds and elements such as SO , Cl, B, and F and creates acidic water. Fumarole/solfatara released anykind of gases, such as H O, CO , CO, HCl, SO , H S, HF, H , HBr, NH , CH , H BO , and N . Moreover interaction of andesitic rock and acidic water apparently produces ionic source of Na, K, Ca. Mg, Fe, Al including trace elements such as Zn, Li, Sr, As, Rb, Cr, Pb, Ti, Ni, Cu, Ce, and Be.The composition of crater lake water of the Kelud volcano is included into an immature water category with HCO . The fl uctuation of element, compound and gas contents within the lake water with their depletion trend during the period of 1990 – 2005 may be related to decreasing of volcanism activity in the duration of 1990 post-eruption. 
Peningkatan kegiatan Gunung Api Tangkubanparahu Jawa Barat pada bulan April 2005 Dana, Isya Nurrahmat; Kadarsetia, Eka; Primulyana, Sofyan; Hendrasto, Muhammad; Nasution, Asnawir
Indonesian Journal on Geoscience Vol 1, No 4 (2006)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (545.362 KB) | DOI: 10.17014/ijog.1.4.193-200

Abstract

http://dx.doi.org/10.17014/ijog.vol1no4.20063Tangkubanparahu is an active strato volcano located in West Java lying about 30 km to the north of Bandung City. Its crest is 2084 m above the sea level. In order to gain a better understanding on volcanism and magmatism of this volcano, various research and monitoring have been carried out, such as geochemistry and geophysics. Chemical composition of volcanic gases collected from the Ratu Crater (950 C in 1994, 1997, 1998 ratio of CO /H S, CO /H , and H /Ar, is suggested to indicate the presence of a fast fl uid movement and 2005, shows that the gas is hydrous with the main component of H O, CO , H S and small amount SO ; where CO content is higher than (SO + H S). The gas composition showing high of value from the depth before condensed at the shallow surface water area. Hotspring from the Domas Crater contains a high concentration of SO , low of Cl and absence of H CO . The high sulphate content is suggested to be originated from the volcanic gases, especially hydrogen sulphide oxydated near the surface, that then the gas infl uenced chemical composition due to shallow water.Continuous seismic monitoring uses one permanent station, while the other methods like Electric Distance Measurement (EDM), Global Positioning System (GPS) and Seismometer have been installed temporary. From geophysical evidence on April 2005 activity, some valuable information can be obtained. Hypocenter is located at the depth less than 2 km beneath an area between the Ratu and Domas Craters, while pressure source of deformation is below Domas Crater. Some low frequency volcanoquakes is possibly caused by volcanic gases released from the reservoir.
Menelusuri kebenaran letusan Gunung Merapi 1006 Andreastuti, Supriati Dwi; Newhall, Chris; Dwiyanto, Joko
Indonesian Journal on Geoscience Vol 1, No 4 (2006)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (606.537 KB) | DOI: 10.17014/ijog.1.4.201-207

Abstract

http://dx.doi.org/10.17014/ijog.vol1no4.20064Until now, the large eruption of Merapi in 1006 is believed to take place although the truth is still debatable. Previous investigation proposed that the ”pralaya” of the Ancient Mataram Kingdom in 928 Saka (1006) was due to a volcanic activity. Bemmelen also inferred that impact of the eruption had destroyed and covered the Mendut and Borobudur Temples and dammed the Progo River. However, if the “pralaya” was caused by Merapi eruption, why the deposit that correlates to the the eruption is not recognized. If so, the eruption that covered the temples should have been very large, and left deposits around Merapi and of course easy to find. Historically, the “pralaya“ mentioned in the Pucangan Inscription did not happen in 1006, but in 1016 or 1017. However the “pralaya“ was caused by the attack of King Wurawari, not by the Merapi eruption. According to the history of Merapi eruptions, 11 large eruptions have occurred since 3000 years ago. However, none of those fi t with 1006 eruption. Except the large eruption (VEI 3-4), that produced Selo tephra, dated 1112 ± 73 years BP (765-911).  
Klasifikasi gunung api aktif Indonesia, studi kasus dari beberapa letusan gunung api dalam sejarah Pratomo, Indyo
Indonesian Journal on Geoscience Vol 1, No 4 (2006)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (710.239 KB) | DOI: 10.17014/ijog.1.4.209-227

Abstract

http://dx.doi.org/10.17014/ijog.vol1no4.20065Indonesia is well known as a volcanic country, where more than 30% out of all the world volcanoes occupied this region. Volcanic region is generally densely populated, because of their soil fertility and other land use. Based on their historical eruptions noted since and before 1600 A.D., the Indonesian active volcanoes are regrouped in to A type (79 volcanoes), which were defi ned as volcanoes erupted since 1600 A.D., B type (29 volcanoes) erupted before 1600 A.D., and C type (21 volcanoes) are solfatar fi elds (Bemmelen, 1949; van Padang 1951; Kusumadinata, 1979). Studies on parts of the Indonesian active volcanoes, show different eruptive characters, which are generally related to hazard potentials. A new classifi cation of Indonesian active volcanoes was proposed based on the combination of their physical properties, morphology, volcanic structure and eruptive styles to the eight differents types, those are Tambora (caldera formation), Merapi (lava dome), Agung (open crater), Papandayan (sector failure), Batur (post-caldera activities), Sangeangapi (lava fl ows) and Anak Krakatau types (volcano islands and submarine volcano). This classification would be make a better understanding to different characteristics of Indonesian active volcanoes, for the volcanic hazard and mitigation and also for the applied volcanological researches.  

Page 1 of 1 | Total Record : 5