cover
Contact Name
-
Contact Email
jag.ft@ugm.ac.id
Phone
+62274-513668
Journal Mail Official
jag.ft@ugm.ac.id
Editorial Address
Geological Engineering Departement Universitas Gadjah Mada Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 Phone +62-274-513668 Fax +62-274-546039
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Applied Geology
ISSN : 25022822     EISSN : 25022822     DOI : https://doi.org/10.22146
Journal of Applied Geology – JAG focuses on the applied geology and geosciences with its key objective particularly emphasis on application of basic geological knowledge for addressing environmental, engineering, and geo-hazards problems. The subject covers variety of topics including geodynamics, sedimentology and stratigraphy, volcanology, engineering geology, environmental geology, hydrogeology, geo-hazard and mitigation, mineral resources, energy resources, medical geology, geo-archaeology, as well as applied geophysics and geodesy.
Articles 5 Documents
Search results for , issue "Vol 7, No 2 (2022)" : 5 Documents clear
Geochemistry of shield stage basalts from Baluran volcano, East Java, Sunda arc Esti Handini; Toshiaki Hasenaka; Nicholas D Barber; Tomoyuki Shibata; Yasushi Mori
Journal of Applied Geology Vol 7, No 2 (2022)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.73697

Abstract

We report petrography and geochemistry of basaltic lava flows from the shield stage of Baluran, a Quaternary volcanic center in the rear of East Java, Sunda Arc, Indonesia. These basalts contain abundant plagioclase, clinopyroxene, olivine, and minor magnetite. Geochemically, they resemble other medium-K calc alkaline basalts from eastern Java’s volcanoes, but they are less enriched in light ion lithophile elements (LILE) and Pb. The predicted primary basalt of Baluran lavas can be sourced to a more primitive primary melt composition which may also generate medium-K calc-alkaline magmas in the region. The fractionation trajectory of these primary magmas shows the importance of plagioclase, clinopyroxene, olivine, and magnetite phase removal from the melt. Regardless of the diverse composition of the derivatives, the calculated primary basalts from the eastern Java are all in the field of nepheline-normative. This finding suggests variably small degree of melting of clinopyroxene-rich mantle source is at play in the generation of these magmas. Our result further suggests that the clinopyroxene source rock is possibly present as veins in peridotite mantle which have experienced metasomatism by addition of slab-derived fluids at differing proportion.
Engineering Geology and Slope Stability of West Pit Coal Mine of PT. Tawabu Mineral Resource, East Kalimantan, Indonesia Rama Tri Saksono; I Gde Budi Indrawan; Wahyu Wilopo
Journal of Applied Geology Vol 7, No 2 (2022)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.76532

Abstract

The research area was located in the west pit of the open pit coal mine of PT. Tawabu Mineral Resource (TMR) which is located in Bengalon District, East Kutai Regency, East Kalimantan Province, Indonesia. The research was driven by several landslides that occurred in the research area, but the engineering geological conditions and stability of the remaining slopes have not been evaluated. The objectives of this study were to better understand the engineering geological conditions and stability of the research area. The engineering geological conditions (i.e., geomorphology, rock and soil, geological structure, and groundwater conditions) were evaluated by photogrametric analyses, field observations, and analyses of borehole logs and laboratory test results. The slope stability analyses were firstly carried out by conducting back stability analyses of failed slope on the northern lowwall slope segment. The shear strength parameters obtained from the back analyses were then used for forward stability analyses of the remaining 10 lowwall and highwall slopes. The slope stability analyses involved deterministic and probabilistic analyses, under static and dynamic using the limit equilibrium method (LEM).  The results showed that the research area and the surrounding consisted of two geomorphological units, namely the alluvial plain and structural hills. Rocks in the study area consisted of claystone, sandstone, and coal with a general layer strike direction of N59°E – N63°E with a dip of 19°-26°. These rocks were grouped into two lithological units, namely the alternating of claystone and sandstone unit and alternating of sandstone and claystone unit. The geological structures were identified on the highwall, from west to east namely major sinistral shear fault with a relative direction of NNE-SSW, two minor sinistral shear faults with a relative direction of NE-SW, and a major dextral shear fault with a relative direction of NW-SE. These geological structures were interpreted as being formed by the folding process. The groundwater level was estimated at a level of -45 m to 20 m. The slope stability analyses showed that only the East HW-4 slope, which was located on the east highwall, was unstable. It is recommended to optimize the slope by either lowering the groundwater elevation by 4 m from the actual level or by reducing the angle the overall slope to 31°.
Facies Analysis and Reservoir Characterization Using Petrophysical Methods in the Interest Zone in the 'FAN' Field, Kutai Basin, East Kalimantan Isfan Fajar Fathur Rahman; Wahju Krisna Hidajat; Reddy Setyawan; Yunita Meilany; Dhimas Aditya Nugraha
Journal of Applied Geology Vol 7, No 2 (2022)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.73457

Abstract

One of the most prospective oil and gas producing basins in Indonesia is Kutai Basin which is located in East Borneo. In Kutai Basin there is a natural resource potential in the form of gas which is quite abundant. This is due to the richness of the source rock aspect in the Kutai Basin which is dominated by coal. Besides coal, in the Kutai Basin there is also claystone with rich organic matter (organic shale) that has an important role as a prospective source rock. Therefore, a final project research was conducted in the Kutai Basin, East Kalimantan. The purpose of the research is to identifying the type and content of subsurface lithology and fluids, calculating petrophysical parameters, and making the facies distribution map at the research site in potential and prospective zone to produce hydrocarbons which is called the zones of interest. The research is focused on reservoir rocks at the research site because the hydrocarbons accumulated in the reservoir rocks itself. By focusing research on reservoir rocks, it will be able to describe the modelling and calculation results of petrophysical parameters using several analytical methods such as qualitative and quantitative analysis methods, electrofacies and parasequence analysis methods, stratigraphic correlation analysis methods, facies analysis methods and depositional environments, and facies map analysis methods. In addition, by focusing research on reservoir rocks, it can develop and increase the level of optimization of exploration and exploitation of drilling wells. Based on the analysis data, the research location is included in the transitional depositional environment, delta in particular with distributary channels and mouth bars facies and also it can be identified some lithology such as sandstone, claystone, coal, limestone, and organic claystone and there are fluids with gas and water types.
Susceptibility Zoning of Soil Movement in Tawangmangu District, Karanganyar Regency with Bivariate Statistic Method - Weight of Evidence Dwika Rizki Wirawan; Agung Setianto; Esti Handini
Journal of Applied Geology Vol 7, No 2 (2022)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.78754

Abstract

Tawangmangu district which is located in Karanganyar Regency, Central Java is a crowded area which is susceptible to disaster. Therefore, susceptibility zoning analysis is needed to support the planning and development of the area. The method used is bivariate statistics - weight of evidence which has never been implemented in its location. There are two types of data, data of potential and soil movement case (divided into train data as 61 points and test data as 40 points); and parameter data of soil movement causes. Parameter data of soil movement is processed to be a WoE (Weight of Evidence) parameter map through the use of train data to know the weight. Later on, it will be validated based on the AUC value. If it’s > 0,60, then the process will proceed. Parameter which has AUC value > 0,60 is type of lithology, slope, hill, elevation, slope direction, distance from the fault, and index of vegetation density. All of those parameters are attached and being final validated by test data. Further, the zonation consists of four; zone of very low soil movement susceptibility, low, medium, and high. The area of the very low soil movement susceptibility zone is 19,68%. Zone of low susceptibility is mostly 24,57%. Zone of medium susceptibility is 25,88%. Meanwhile, the zone of high susceptibility is 29,86%. The result of final validation shows that AUC value from the zoning model made belongs to a good category, which is 0,757.
Petrophysical Study and Rock Type Determination of Siliciclastic Reservoir: Case Study Sand of Bekasap Formation, AF Field, Central Sumatra Basin, Indonesia Dwi Charisah Andriyani; Sarju Winardi; Sugeng Sapto Surjono
Journal of Applied Geology Vol 7, No 2 (2022)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.83471

Abstract

An integrated subsurface study has been performed for a large and mature field at the Bekasap Formation in Central Sumatra Basin. The Bekasap Formation sand represents an undeveloped reservoir because of its heterogeneity. There are five sand reservoirs (BK1, BK2, BK3, BK4, and BK5) from Bekasap Formation, which each zone or layer bounded by a flooding surface. Each sand reservoir has particular characterization based on petrophysical properties that represent geological process. The petrophysical properties consist of shale volume, porosity, and water saturation obtained by wireline log calculation. This study uses conventional core data to validate the log calculation to achieve an accurate interpretation. Bekasap reservoir is a sandstone reservoir deposited in an estuarine with tide-dominated. Formation evaluation was done to determine the interest zone by petrophysical properties. The result well-log calculation and reservoir cut-offs showed the thickest reservoir in the BK 3 with the best average values of petrophysical properties with an average shale volume 0.32; porosity of 0.245. Otherwise, in rock type determination, four lithofacies are divided in the reservoir based on flow units. The sample RT 1 and RT2 provided the best reservoir zones with HFU1 and HFU2. The RT 3 and RT 4 dominated in HFU3 and HFU4 had the lowest potential zones of reservoir. The final findings showed a good correlation between sedimentologic analysis and petrophysical properties in the rock type determination. As a result, the best reservoir quality development is controlled by the depositional environment (texture and structure) rather than the diagenetic process in this reservoir. It is proven by petrophysical properties in BK1, and BK2 is coastal barrier sand (tidal sand bar) has more clean sand rather than in BK3 and BK4 deposited in the offshore bar.

Page 1 of 1 | Total Record : 5