cover
Contact Name
-
Contact Email
jag.ft@ugm.ac.id
Phone
+62274-513668
Journal Mail Official
jag.ft@ugm.ac.id
Editorial Address
Geological Engineering Departement Universitas Gadjah Mada Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 Phone +62-274-513668 Fax +62-274-546039
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Applied Geology
ISSN : 25022822     EISSN : 25022822     DOI : https://doi.org/10.22146
Journal of Applied Geology – JAG focuses on the applied geology and geosciences with its key objective particularly emphasis on application of basic geological knowledge for addressing environmental, engineering, and geo-hazards problems. The subject covers variety of topics including geodynamics, sedimentology and stratigraphy, volcanology, engineering geology, environmental geology, hydrogeology, geo-hazard and mitigation, mineral resources, energy resources, medical geology, geo-archaeology, as well as applied geophysics and geodesy.
Articles 5 Documents
Search results for , issue "Vol 9, No 1 (2024)" : 5 Documents clear
Electrical Resistivity Tomography and Boreholes Data to Investigate the Near-Surface Structure under the Campus Area of Çanakkale Onsekiz Mart University, Çanakkale, Turkey (Türkiye) Co ̧skun, Nart; Çakır, Özcan; Kutlu, Yusuf Arif; Erduran, Murat
Journal of Applied Geology Vol 9, No 1 (2024)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.87742

Abstract

We study the soil foundation underneath the Çanakkale Onsekiz Mart University (ÇOMU) campus, Çanakkale, Türkiye by employing the electrical resistivity tomography – ERT supported by 27 boreholes data. The studied area taking place in southwest Marmara region was historically affected by large earthquakes () created by the North Anatolian Fault system. The boreholes data show that the near surface structure beneath the ÇOMU campus is made of mostly silty sands and marls. A high sensitivity resistivity instrument is used to collect the field data in which nine ERT profiles reaching lengths as long as 315 m are utilized. The current geoelectrical measurements are simulated by using two numerical models to estimate the inversion depth sensitivity from which it is found satisfactory in the depth range 0-30 m and then somewhat decreasing. The observed electrical resistivity values are in the range 2-160 W m. The geoelectrical structure corresponding to the silty sands are represented by low resistivities (<20 W m) while the high resistivity (>40 W m) depth sections are associated with the marl units. The resistivity structure beneath the ÇOMU campus is complex where both low and high resistivity depth sections reside side by side. The groundwater and clay mineralogy contribute to the broad changes in the subsurface resistivities. The groundwater flow below the steep terrain of the ÇOMU campus causes low resistivities (<10 W m) deeper than 10-m depth. The boreholes data superimposed on the two-dimensional (2-D) ERT profiles show consistency with the resistivity-depth distributions at corresponding depths.
Geochemical Characteristic of the Carbonaceous Sediments of the Upper Paleozoic Kuantan Group, Malaysia Burgan, Amer M
Journal of Applied Geology Vol 9, No 1 (2024)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.92708

Abstract

                                                   The geochemical parameters discussed in this paper are based on an average values of twelve outcrop carbonaceous samples, mainly black shales, were determined using X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) techniques, representative of Charu, Sagor, and Permian formations.The aim of this study is to define and discuss their characteristics, the distribution abundance of major and minor elements, investigation the dominant mineralogical composition and reconstruct the depositional environment for these sediments.The bulk chemical result showed that, the average values of the major elements are 65.83%, 64.82 %, 71.4 % SiO2, 18.27 %, 22.2 %, 15.66 % Al2O3, 1.53 %, 0.99 %, 2.49 % Fe2O3. 4.06 %, 6.25 %, 3.66 %  K2O , whereas in the case of the miner elements, the results read values of 524.4 ppm, 758.8 ppm, 446.3 ppm Ba , 366 ppm, 399.3 ppm, 257.3 ppm Rb, 88 ppm, 67.3 ppm, 47.3 ppm Sr , 308 ppm, 288.8 ppm, 327ppm Zr for the Charu, Sagor, and Permian  formations  respectively. The major oxides reflect the dominant mineralogical composition of quartz and other silicate minerals (e.g. illite, kaolinte, smectite) and deficiency in carbonates.The high Rb/K ratio suggests brackish marine environment or rapid depositions that prevent equilibrium between Rb and K in these study shales and marine environment. The high Rb/Sr ratios of 4.16, 5.89 and 5.44 for the Charu, Sagor, and Permian formations respectively possibly attributed to the lowest contents of Sr content due to reducing environment prevailing during deposition of these sediments.                                                   
Slope Stability Analysis Using Electrical Resistivity Tomography and Limit Equilibrium Method: A Case Study from Girimulyo, Kulon Progo Santie, Putri Anjary Widya; Wilopo, Wahyu; Faris, Fikri
Journal of Applied Geology Vol 9, No 1 (2024)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.97467

Abstract

Girimulyo sub-district is one of the areas with high landslide risk in Kulon Progo Regency. On March 12, 2018, a landslide occurred in the area. Seven families were affected, and landslide material blocked the road. This study aims to determine slope conditions through electrical resistivity tomography (ERT) and slope stability analysis using the limit equilibrium method. Based on the interpretation of the ERT profile, it is known that a layer with a resistivity value of <5 Ωm is wet clay; 5-15 Ωm is wet silt; 15-150 Ωm is silt-to-sand; and >150 Ωm is bedrock. The sliding surface is thought to be at the boundary between the wet clay and wet silt layers. The interpretation of the ERT profile is confirmed by data from laboratory tests on soil samples. Slope stability analysis was carried out using ERT profile interpretation and soil sample laboratory test data. The slope stability analysis results show that both the slopes that experienced landslides in 2018 and those that did not experience landslides were stable when the water table was 3 meters deep. However, the landslide slopes are in critical condition as the groundwater level rises, while the non-landslide slopes are remains stable.
Geological Investigation of Clay Minerals (Swelling) Pt. Upb Antam Pongkor Bogor, West Java, Indonesia Gevor, Even; Indrawan, I Gde Budi; Warmada, I Wayan
Journal of Applied Geology Vol 9, No 1 (2024)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.97600

Abstract

Rocks containing clay minerals can experience rock deformation when interacting with water, this can also caused by the argillic zone, in the underground tunnel at the Unfoloader 600 and Xc 600 loop 2 ciurug. The argillic process that causes actual material swelling that occurs in field causes rock mass around the mining development area to become weak. The location from tunnel cross cut of Unfoloader 600 and Xc 600 loop 2 contain active clay minerals which high percentage composition of swelling mineral material. The Unfoloader 600 location has a mineral swelling composition of 102.94% with 24 hours, justifying potential very high swelling. The minerals present based on XRD testing 70.8% illite, 25.4% kaolinite, 25.4% kaolinite and 3.8% montmorillonite. Location Xc 600 loop 2 has a mineral swelling composition of 131.25% with 24 hours, justifying potential for very high swelling. The minerals present based on XRD testing illite 49.7%, kaolinite 28.7%, quartz 20.3%, and montmorillonite 1.2%. The values obtained based on laboratory form free swelling tests and XRD that the location experienced of rock deformation, it’s swelling in the mining development area.
Identification of Paleovolcanic Centers in the Bima District, East Sumbawa Island (Indonesia) as Guidance for Future Exploration of Cu-Au Deposits Habib, Juhair Al; Setijadji, Lucas Donny; Maryono, Adi; Rompo, Iryanto
Journal of Applied Geology Vol 9, No 1 (2024)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.98713

Abstract

The formation of Cu-Au mineralization, such as porphyry and epithermal deposits, is strongly associated with volcanic processes in specific tectonic settings, such as subduction zones. The identification of the presence of ancient volcanoes is one of the important steps to finding mineral deposits. This study aims to identify the presence of ancient volcanoes in the Bima District, eastern part of Sumbawa Island, as a step toward determining the potential indication of Cu-Au mineralization. The methods used in this research consist of a literature study, image analysis and remote sensing, field survey and data collection, and petrographic analysis. Image analysis using DEMNAS (Digital Elevation Model), including texture and pattern analysis using the concept of volcanic anatomy, aims to identify the remaining forms of ancient volcanoes. Field surveys and data collection include volcano geomorphology, lithology and sampling, and also geological structures. Petrographic analysis is conducted to qualitatively characterize the texture, structure, and mineralogy of volcanic rocks. The identification results show that there are at least ten volcanoes (crown) identified through image analysis, namely Doro Mbangga, Doro Baku, Doro Donggo Masa, Doro Rompo, Doro Sape, Doro Kowo, Doro Jia, Doro Sambori, Doro Mangge, and Doro Lambu. Each of these volcanoes has one or more eruption center (hummock). The eruption center identified in the central, proximal, to distal facies of the volcano, even superimposing one volcano product with another, and spread around 80-90% in the study area. The volcanic facies in the study area are characterized by the central part being composed of lithologies such as intrusive rocks, lava, and diatreme breccia, while the proximal and distal facies are composed of breccia, volcanic breccia, and tuff.  Hydrothermal alteration zones are identified in the central and proximal facies of the volcano. These alterations were associated with the presence of eruption centers, where the abundance of eruption centers means that hydrothermal alterations are particularly well developed and pervasively formed. Identified argillic and advanced argillic alteration associated with stockworks forming a lithocap environment. In addition, the presence of intrusive rocks such as diorite and dacite with chloritic and sericitic alteration in the central facies of Doro Baku can be associated with the presence of deposits such as porphyry and epithermal, so the identification of ancient volcanic eruption centers in the Bima district has implications for the potential discovery of Cu-Au mineralization, such as porphyry and epithermal deposits.

Page 1 of 1 | Total Record : 5