cover
Contact Name
-
Contact Email
pis.ejournal@gmail.com
Phone
-
Journal Mail Official
pis.ejournal@gmail.com
Editorial Address
Jl. Utan Kayu Raya No. 104A, Jakarta Timur 13120, Indonesia
Location
Kota adm. jakarta timur,
Dki jakarta
INDONESIA
Chemistry and Materials
ISSN : 2828271X     EISSN : 28282310     DOI : https://doi.org/10.56425/cma
Core Subject : Science,
Chemistry and Materials is a peer-reviewed journal published by The Center for Science Innovation (Pusat Inovasi Sains). The journal covers all aspects of Chemistry and Materials including synthesis, characterization, and applications. Theoretical and computational studies are also welcome.
Articles 5 Documents
Search results for , issue "Vol. 2 No. 3 (2023)" : 5 Documents clear
Nickel Oxide (NiO) Thin Film Synthesis via Electrodeposition for Methylene Blue Photodegradation Mokhamad Ali Rizqi Maulana; Aisyaturridha; Salmah Cholilah; Fitria Dwi Arista; Bagus Nur Listiyono
Chemistry and Materials Vol. 2 No. 3 (2023)
Publisher : Pusat Inovasi Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56425/cma.v2i3.62

Abstract

Nickel oxide (NiO) is an ideal photocatalyst material for methylene blue photodegradation. NiO is known to have high photocatalytic activity, good stability, and non-toxic properties. However, conventional NiO thin film synthesis methods are inefficient because require high temperatures, complex equipment operations, and volatile precursor solutions. Therefore, in this study, NiO was synthesized by the electrodeposition method and then applied for methylene blue photodegradation. NiO thin film's morphological structure and elemental composition percentage were characterized by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Meanwhile, the crystal structure was characterized using an X-ray diffractometer. Several electrochemical and photodegradation tests were conducted to analyze the performance of the NiO photocatalyst. The results showed NiO was successfully synthesized using the electrodeposition method.  The morphology of NiO was a coral-like structure. A sharp diffraction peak with high intensity at 2  with 43.28° indicates a well-ordered crystalline of NiO. The maximum photocurrent density generated from the photoelectrochemical test was 0.1287 mA/cm2. The small charge transfer resistance value (1353.6 Ω) confirmed from the electrochemical impedance spectroscopy test indicates low charge transfer resistance. Percent photodegradation of methylene blue was obtained at 65% in 100 min, which indicated good photocatalytic activity.
Electrodeposition of CoNi Bimetallic Catalyst for Ethanol Electrooxidation Application Abdul Asywalul Fazri; Alvida Nor Puspita; Selvia Ningsih; Annisa Auliya
Chemistry and Materials Vol. 2 No. 3 (2023)
Publisher : Pusat Inovasi Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56425/cma.v2i3.63

Abstract

Platinum is potentially employed as a catalyst in direct ethanol fuel cells (DEFCs). However, its scarcity and susceptibility to carbon monoxide poisoning give rise to novel challenges necessitating resolution. Transition metals such as nickel and cobalt are regarded as highly auspicious catalysts for DEFCs due to their perceived potential to reduce the expenditure associated with the synthesis procedure. In the present investigation, the synthesis of a cobalt-nickel (CoNi) catalyst with bimetallic properties was effectively accomplished through the electrodeposition technique utilizing the stimulator mode. Subsequently, an evaluation was conducted to assess the catalyst's proficiency in ethanol electrooxidation. The CoNi samples underwent comprehensive characterization through the utilization of various analytical techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental dispersive X-ray analysis, and electrochemical impedance spectroscopy (EIS). The XRD analysis confirmed the formation of CoNi, while the SEM characterization demonstrated that the CoNi samples exhibited a homogeneous morphological feature. The impedance measured by the EIS technique displayed a resistance to charge transfer value of 21.21 kΩ, while the solution resistance value amounted to 66.67 kΩ. The catalytic efficiency of the specimens in ethanol electrooxidation was evaluated using the cyclic voltammetry technique, resulting in a peak current density of 3.14 mA/cm2 proving the potential of bimetallic CoNi to be a low-cost catalyst for ethanol electrooxidation process.
Synthesis of CoNi by Electrodeposition Technique and its Application as an Electrocatalyst for Water Splitting Chika Shafa Maura; Muhammad Fathar Aulia; Raudhatul Hadawiyah; Wulan Kharisma Dera; Hilman Syafei
Chemistry and Materials Vol. 2 No. 3 (2023)
Publisher : Pusat Inovasi Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56425/cma.v2i3.64

Abstract

Water splitting is regarded as a highly efficacious methodology for obtaining hydrogen, intending to be employed for the purpose of renewable fuel production. However, the performance of this technique is constrained by the sluggish kinetics of the hydrogen evolution reaction in alkaline environments and the oxygen evolution reaction, which leads to significant energy inefficiency and excessive potential requirements. To enhance the reaction kinetics and efficiency of water splitting, there exists a pertinent requirement for an electrocatalyst that exhibits commendable efficiency. The primary objective of this study is to construct a cobalt-nickel (CoNi) electrocatalyst that facilitates water splitting. The present study employs the technique of electrodeposition for its experimental procedures. The findings of the study indicated that the CoNi sample, as observed through scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX) analysis, exhibited a flattened, circular form and agglomeration. The EDX analysis yielded elemental composition results indicating a cobalt content of 20.51% and nickel content of 79.49% The X-ray diffractometer analysis reveals that the CoNi metal alloy has manifested a crystalline structure with a cubic configuration. The electrochemical impedance spectroscopy found that the charge transfer resistance of CoNi with the electrolyte solution was 1.48 kΩ. The data collected from the chronoamperometry test indicates the presence of a consistent and unchanging electrical current. Additionally, the cyclic voltammetry test presented Epa and Epc values of 0.4469 V and 0.3037 V, respectively, leading to a calculated ∆E of 0.1432 V. The research findings establish that the CoNi alloy, synthesized via the electrodeposition technique, exhibited a performance-effective electrocatalyst that closely approached the desired outcome.    
Synthesis and Characterization of Nanocube Cu2O Thin Film at Room Temperature for Methylene Blue Photodegradation Application Muhamad Athariq; Muhammad Raihan Rauf; Ikhfa Wiqoy Khairany; Intan Fadia Adani; Mega Gladiani Sutrisno
Chemistry and Materials Vol. 2 No. 3 (2023)
Publisher : Pusat Inovasi Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56425/cma.v2i3.65

Abstract

Methylene Blue is a synthetic dye with a complex structure thus making it hard to decompose naturally. Among the decomposition methods of synthetic dyes is photodegradation using a semiconductor material. In this study, Cu2O semiconductor nanoparticle has been synthesized on the surface of conductive substrate indium tin oxide using the electrodeposition method at room temperature. The X-ray diffractometer analysis provides information on the presence of Cu2O in the sample and the shape of the Cu2O crystal system which is a nanocube. Scanning electron microscopy with energy-dispersive X-ray spectroscopy provides distribution mapping information based on the morphology and atomic composition of the sample. Impedance measured a maximum resistance to charge transfer value of 2500 Ω. Photodegradation test towards methylene blue achieved a percent of degradation was 62.00% for 120 minutes under visible light irradiation with initial and final absorbance values of 1.56351 abs and 0.896875 abs respectively.
Enhancing Antioxidant Activity of Curcumin Using ZnO Nanoparticles Synthesized by Electrodeposition Method Nisrina Fitri Nur Syamsi fitri; Alsifa Andita Putri; Rachmaniah Nurul Imani; Suci Putriyaningsih; Devia Alventiana Sipayung; Anis Sakinah
Chemistry and Materials Vol. 2 No. 3 (2023)
Publisher : Pusat Inovasi Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56425/cma.v2i3.68

Abstract

The objective of this study was to fabricate zinc oxide (ZnO) nanoparticles through the utilization of the electrodeposition technique, to employ them as a supportive medium for enhancing the antioxidant properties of curcumin. The study involved the synthesis of ZnO nanoparticles, which were subsequently subjected to characterization using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Additionally, the antioxidant activity of the synthesized nanoparticles was assessed through the use of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. In XRD analysis, a notable peak denoted by an asterisk (*) is observed at specific angles of 2θ: 25.84°, 31.63°, 34.21°, and 36.12°, with corresponding index values (h, k, l) of (220), (100), (002), and (101), respectively. This peak is indicative of the degree of crystallinity exhibited by ZnO nanoparticles. The SEM data indicates that the particles generated possess a rod-like morphology, exhibiting a range of sizes. The Nyquist plots exhibit a semicircular arc pattern at low frequencies, as indicated by the findings from the EIS test. The data obtained from antioxidant assays indicated that ZnO-curcumin achieved an inhibition level of 47.09%, while curcumin alone showed a significantly lower inhibition percentage of 4.93%.

Page 1 of 1 | Total Record : 5