cover
Contact Name
Dr. Basari
Contact Email
basari.st@ui.ac.id
Phone
+6221-29120943
Journal Mail Official
editor_mst@ui.ac.id
Editorial Address
Universitas Indonesia ILRC Building, 1st Floor, Depok 16424, Indonesia Kota depok, Jawa barat INDONESIA
Location
Kota depok,
Jawa barat
INDONESIA
Makara Journal of Technology
Published by Universitas Indonesia
ISSN : 23552786     EISSN : 23564539     DOI : https://doi.org/10.7454/mjt
MAKARA Journal of Technology is a peer-reviewed multidisciplinary journal committed to the advancement of scholarly knowledge and research findings of the several branches of Engineering and Technology. The Journal publishes new results, original articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. It also offers rapid dissemination. MAKARA Journal of Technology covers the recent research in several branches of engineering and technology include Electrical & Electronics Engineering, Computer Engineering, Mechanical Engineering, Chemical & Bioprocess Engineering, Material & Metallurgical Engineering, Industrial Engineering, Civil & Architecture Engineering, and Marine Engineering. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the engineering & technology and the effect of rapid publication on the research of others. This journal, published three times each year, is where readers look for the advancement of discoveries in engineering and technology.
Articles 15 Documents
Search results for , issue "Vol. 15, No. 1" : 15 Documents clear
Determining the Standard Value of the Oily Distortion of Acquisition the Fingerprint Images Syam, Rahmat; Hariadi, Mochamad; Purnomo, Mauridhi Hery
Makara Journal of Technology Vol. 15, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Determining the Standard Value of the Oily Distortion of Acquisition the Fingerprint Images. This research describes a novel procedure for determining the standard value of the oily distortion of acquisition the fingerprint images based on the score of clarity and ridge-valley thickness ratio. The fingerprint image is quantized into blocks size 32 x 32 pixels. Inside each block, an orientation line, which perpendicular to the ridge direction, is computed. The center of the block along the ridge direction, a two-dimension (2-D) vector V1 (slanted square) with the pixel size 32 x 13 pixels can be extracted and transformed to a vertical 2-D vector V2. Linear regression can be applied to the onedimension (1-D) vector V3 to find the determinant threshold (DT1). The lower regions than DT1 are the ridges, otherwise are the valleys. Tests carried out by calculating the clarity of the image from the overlapping area of the gray-level distribution of ridge and valley that has been separated. Thickness ratio size of the ridge to valley, it is computation per block, the thickness of ridge and valley obtained from the gray-level values per block of image in the normal direction toward the ridge, the average values obtained from the overall image. The results shown that the standard value of the oily distortion of acquisition the fingerprint image is said to oily fingerprint when the images have local clarity scores (LCS) is between 0.01446 to 0.01550, global clarity scores (GCS) is between 0.01186 to 0.01230, and ridge-valley thickness ratio (RVTR) is between 6.98E-05 to 7.22E-05.
Are IEEE 754 32-Bit and 64-Bit Binary Floating-Point Accurate Enough? Hutabarat, Bernaridho; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
Makara Journal of Technology Vol. 15, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper describes a research toward the accuracy of floating-point values, and effort to reveal the real accuracy. The methods used in this research paper are assignment of values, assignment of value of arithmetic expressions, and output the values using floating-point value format that helps reveal the accuracy. The programming-tool used are Visual C# 9, Visual C++ 9, Java 5, and Visual BASIC 9. These tools run on top of Intel 80 x 86 hardware. The results show that 1*10-x cannot be accurately represented, and the approximate accuracy ranges only from 7 to 16 decimal digits.
Two-Class Classification with Various Characteristics Based on Kernel Principal Component Analysis and Support Vector Machines Timotius, Ivanna Kristianti; Setyawan, Iwan; Febrianto, Andreas Ardian
Makara Journal of Technology Vol. 15, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Two class pattern classification problems appeared in many applications. In some applications, the characteristic of the members in a class is dissimilar. This paper proposed a classification system for this problem. The proposed system was developed based on the combination of kernel principal component analysis (KPCA) and support vector machines (SVMs). This system has been implemented in a two class face recognition problem. The average of the classification rate in this face image classification is 82.5%.
The Synergy of Recombinant Xylanolytic Enzyme on Xylan Hydrolysis Asmarani, One; Wardojo, Bambang Prajogo Eko; Puspaningsih, Ni Nyoman Tri
Makara Journal of Technology Vol. 15, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Microbial xylanases or xylanolytic enzyme have received considerable attention over the last years owing to a multitude of possible applications. These enzymes have potential in the biodegradation of lignocellulosic biomass to fuels, chemicals, fruit juice, animal feed and in improving rumen digestion. More recently, the use of xylanases as bleaching agent in the pulp and paper industry has been suggested to replace of some of the chemicals presently used for this purpose. Such applications could have an important positive impact on the environment. The purpose of this research was determining the synergy of 3 recombinant xylanolytic enzymes (β-xylosidase, exo-xylanase and α-Larabinofuranosidase) from recombinant Eschericia coli BL21 (DE-star) in xylan hydrolysis by analysis the reduction sugar product. Purified of recombinant xylanolytic enzyme β-xylosidase (Xyl), exo-xylanase (Exo-Xyl) and α-Larabinofuranosidase (Abfa) with Ni-NTA resin. Seven samples of enzyme (each and enzyme mixture) used to hydrolyze xylan substrate (oat-spelt xylan). Analysis of hydrolysis product was done by HPLC. The xylanolytic activities of this enzyme before and after purification were 0,91 and 9,94 U/mL (Exo-Xyl); 1,65 and 14,2 U/mL (Xyl); 0,65 and 5,6 U/mL (Abfa). The xylosidase activity were 2,37 and 14,3 U/mL (Xyl); 1,49 and 10,5 U/mL (Exo-Xyl); 2,54 and 18,6 U/mL (Abfa). The highest hydrolysis product of xylan (xylose) shown in enzyme mixture of exoxylanase and β-xylosidase was 1,084 mg/mL.
Formation of CaCO3 Particle and Conductivity of Na2CO3 and CaCl2 Solution Under Magnetic Field on Dynamic Fluid System Saksono, Nelson; Bismo, Setijo; Widaningroem, Roekmijati; Manaf, Azwar
Makara Journal of Technology Vol. 15, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Hard water causes the CaCO3 scale formation on the pipe walls and heat exchanger equipments in industrial or domestic water processes. A great number of experimental researches on the prevention of the CaCO3 precipitation process by magnetic field have been carried out. In this research, Na2CO3 and CaCl2 solutions was magnetized in the circulated flow condition (dynamic fluid system). The velocity of fluid and the circulation time was modified to examine its influences to the magnetization process. CaCO3 content was measured by titration method of EDTA complexometry. Conductivity test was conducted to find out hydrate ion bonding. The results showed that magnetization increased the CaCO3 formation and the optimum process reaches for 10 minutes circulation on 0.554 m/s of flow rate. Magnetic field decreases the conductivities of Na2CO3 and CaCl2 solution, hence reduced the ion hydrate bonding. These results showed that magnetization on Na2CO3 and CaCl2 ionic solution was effective in controlling the CaCO3 formation by increasing CaCO3 precipitation.

Page 2 of 2 | Total Record : 15