cover
Contact Name
Siti Nurmaini
Contact Email
comengappjournal@unsri.ac.id
Phone
+6285268048092
Journal Mail Official
comengappjournal@unsri.ac.id
Editorial Address
Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universtas Sriwijaya, KampusUnsri Bukit Besar, Palembang
Location
Kab. ogan ilir,
Sumatera selatan
INDONESIA
ComEngApp : Computer Engineering and Applications Journal
Published by Universitas Sriwijaya
ISSN : 22524274     EISSN : 22525459     DOI : 10.18495
ComEngApp-Journal (Collaboration between University of Sriwijaya, Kirklareli University and IAES) is an international forum for scientists and engineers involved in all aspects of computer engineering and technology to publish high quality and refereed papers. This Journal is an open access journal that provides online publication (three times a year) of articles in all areas of the subject in computer engineering and application. ComEngApp-Journal wishes to provide good chances for academic and industry professionals to discuss recent progress in various areas of computer science and computer engineering.
Articles 5 Documents
Search results for , issue "Vol 12 No 2 (2023)" : 5 Documents clear
Implementation of Image Quality Improvement Methods and Lung Segmentation on Chest X-Ray Images Using U-Net Architectural Modifications Rudiansyah Rudiansyah; Lucky Indra Kesuma; Muhammad Ikhsan Anggara
Computer Engineering and Applications Journal Vol 12 No 2 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i2.426

Abstract

COVID-19 is an infectious disease that causes acute respiratory distress syndrome due to the SARS-CoV-2 virus. Rapid and accurate screening and early diagnosis of patients play an essential role in controlling outbreaks and reducing the spread of this disease. This disease can be diagnosed by manually reading CXR images, but it is time-consuming and prone to errors. For this reason, this research proposes an automatic medical image segmentation system using a combination of U-Net architecture with Batch Normalization to obtain more accurate and fast results. The method used in this study consists of pre-processing using the CLAHE method and morphology opening, CXR image segmentation using a combination of U-Net-4 Convolution Block architecture with Batch Normalization, then evaluated using performance measures such as accuracy, sensitivity, specificity, F1-score, and IoU. The results showed that the U-Net architecture modified with Batch Normalization had successfully segmented CXR images, as seen from all performance measurement values above 94%.
Classification of Epilepsy Diagnostic Results through EEG Signals Using the Convolutional Neural Network Method Tri Kurnia Sari; Dian Palupi Rini; Samsuryadi Samsuryadi
Computer Engineering and Applications Journal Vol 12 No 2 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i2.429

Abstract

The brain is one of the most important organs in the human body as a central nervous system which functions as a controlling center, intelligence, creativity, emotions, memories, and body movements. Epileptic seizure is one of the disorder of the brain central nervous system which has many symptoms, such as loss of awareness, unusual behavior and confusion. These symptoms lead in many cases to injuries due to falls, biting one’s tongue. Detecting a possible seizure beforehand is not an easy task. Most of the seizures occur unexpectedly, and finding ways to detect a possible seizure before it happens has been a challenging task for many researchers. Analyzing EEG signals can help us obtain information that can be used to diagnose normal brain activity or epilepsy. CNN has been demonstrated high performance on detection and classification epileptic seizure. This research uses CNN to classify the epilepsy EEG signal dataset. AlexNet and LeNet-5 are applied in CNN architecture. The result of this research is that the AlexNet architecture provides better precision, recall, and f1-score values on the epilepsy signal EEG data than the LeNet-5 architecture.
Voice Recognition Systems for The Disabled Electorate: Critical Review on Architectures and Authentication Strategies Olayemi Mikail Olaniyi; Jibril Abdullah Bala; Shefiu Ganiyu; Yunusa Simpa Abdulsalam; Chimdiebube Emmanuel Eke
Computer Engineering and Applications Journal Vol 12 No 2 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i2.430

Abstract

An inevitable factor that makes the concept of electronic voting irresistible is the fact that it offers the possibility of exceeding the manual voting process in terms of convenience, widespread participation, and consideration for People Living with Disabilities. The underlying voting technology and ballot design can determine the credibility of election results, influence how voters felt about their ability to exercise their right to vote, and their willingness to accept the legitimacy of electoral results. However, the adoption of e-voting systems has unveiled a new set of problems such as security threats, trust, and reliability of voting systems and the electoral process itself. This paper presents a critical literature review on concepts, architectures, and existing authentication strategies in voice recognition systems for the e-voting system for the disabled electorate. Consequently, in this paper, an intelligent yet secure scheme for electronic voting systems specifically for people living with disabilities is presented.
Leaders and Followers Algorithm for Balanced Transportation Problem Helen Yuliana Angmalisang; Harrychoon Angmalisang; Sylvia Jane Sumarauw
Computer Engineering and Applications Journal Vol 12 No 2 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i2.436

Abstract

Leaders and Followers algorithm is a metaheuristic algorithm which uses two sets of solutions and avoid comparison between random exploratory sample solutions and the best solutions. In this paper, it is used to solve the balanced transportation problem. There are some modifications in the proposed algorithm in order to fit the algorithm to the problem. The proposed algorithm is evaluated using 138 problems. The results are better than the results obtained by other algorithm from previous studies. Overall, Leaders and Followers algorithm has no difficulty in finding optimal solution, even in problems that have large dimension, number of supply and number of demands.
Video Based Fish Species Detection Using Faster Region Convolution Neural Network Muhammad Naufal Rachmatullah; Akhtiar W Arum
Computer Engineering and Applications Journal Vol 12 No 2 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i2.467

Abstract

Fish recognition and classification represent significant challenges in marine biology and agriculture, promising fields for advancing research. Despite advancements in real-time data collection, underwater fish recognition and classification still require improvement due to challenges such as variations in fish size and shape, image quality issues, and environmental changes. Feature learning approaches, particularly utilizing convolutional neural networks (CNNs), have shown promise in addressing these challenges. This study focuses on video-based fish species classification, employing a feature learning-based extraction method through CNNs. The process involves two main stages: detection and classification. To address the detection and classification in video a Faster Region Convolutional Neural Network (RCNN) with transfer learning techniques are applied, achieving a mean average precision of 84% for detection and classification tasks. These techniques offer promising avenues for enhancing fish recognition and classification in diverse environments

Page 1 of 1 | Total Record : 5