cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 16 Documents
Search results for , issue "Vol 12, No 3 (2023): May 2023" : 16 Documents clear
An investigation of a 3D printed micro-wind turbine for residential power production Mohammad Shalby; Ahmad A Salah; Ghayda’ A Matarneh; Abdullah Marashli; Mohamed R. Gommaa
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52615

Abstract

The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency
Co-firing of coal and woody biomass under conditions of reburning technology with natural gas Nihad Hodžić; Kenan Kadic
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.50250

Abstract

It is a continuous imperative to establish the most efficient process of conversion of primary energy from fuel through combustion, which also has the least possible harmful effect on the environment. In this time of expressed demands for decarbonisation, it also means the affirmation of the use of renewable fuels and the indispensable application of appropriate primary measures in the combustion furnace. At the same time, the efficiency of the combustion process depends on several factors, from the type and properties of the fuel to the ambient and technological settings for the process. In this regard, with the aim of determining the static characteristics of combustion, experimental laboratory research was carried out on the combustion of mixtures of brown coal with low heating value and a high ash content with waste woody biomass and different process conditions: temperature, staged combustion air supply (air staging) and in conditions of application of a third or additional fuel (natural gas, reburning technology). Applied experimental methods included the analysis of the combustion process on the basis of input (reactants) - output (products), including the analysis of the composition of flue gases, i.e. the determination of the emission of the key components of flue gases CO2, CO, NOx and SO2, as well as the analysis of the composition of slag, ash and deposits ash, i.e. assessment and evaluation of the behaviour of ash from fuel in that process. Based on the obtained research results, this paper shows the significant positive effects of the application of primary measures in the furnace - compared to conventional combustion: air staging - reduction of net CO2 emissions during co-firing with biomass and reduction of NOx emissions by up to 30%; reburning technology - additional reduction of CO2 and NOx emissions in proportion to the share of natural gas, e.g. at a combustion process temperature of 1350 °C and at a 10% energy share of natural gas during the co-firing of a mixture of brown coal and waste woody biomass, compared to the emission without the use of natural gas, a reduction of NOx emissions by 185 mg/mn3 or by almost 30% was recorded. It was concluded, at the same time, the application of these primary measures in the furnace does not negatively affect the behaviour of ash from the fuel in the given settings of the combustion process.
Performance enhancement and emissions reduction in a diesel engine using oleander and croton biodiesel doped with graphene nanoparticles Treza Wambui; Meshack Hawi; Francis Njoka; Joseph Kamau
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51785

Abstract

Biodiesel is considered a suitable substitute for petroleum diesel because it is renewable, environment-friendly, and has a low carbon footprint. However, its high density, high viscosity and low heating value prevents it from replacing petroleum diesel completely. This study investigates the performance and emission characteristics of a compression ignition engine operating on oleander and croton biodiesel doped with graphene nanoparticles. Five fuel samples are used, including diesel (D100), diesel - 80% blended with oleander and croton biodiesel - 20% (OCB20) and OCB20 dosed with graphene nanoparticles at mass fractions of 50 ppm (mg/L), 75 ppm (mg/L) and 100 ppm (mg/L), respectively. The chemical composition of biodiesel and graphene nanoparticles is analyzed using Fourier Transform Infrared (FTIR) spectroscopy while the morphology of the nanoparticles is analyzed using Scanning Electron Microscope (SEM). Engine tests reveal a significant improvement in brake thermal efficiency, especially at 75 ppm concentration which is 2.76%  and 18.93% higher than diesel and OCB20, respectively, and a reduction in brake specific fuel consumption by 2.44% and 16.67% compared to diesel and OCB20, respectively. Carbon monoxide (CO) and unburnt hydrocarbon emissions (UHC) decreases for the 50 ppm sample, recording 8.58% and 21.65% reduction in CO and 52.2% and 50% in UHC compared to the diesel and OCB20, respectively. However, Oxides of Nitrogen (NOx) emissions increase. The results indicate that graphene nanoparticle-enhanced biodiesel can adequately substitute petroleum diesel, albeit with NOx reduction techniques. 
Willingness to pay for green energy sources in the United Arab Emirates (UAE) Haileslasie Tadele; Baliira Kalyebara
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.50575

Abstract

This study investigates the willingness of customers in the UAE to pay a premium for green energy (GE) sources. Given the huge initial investment required for GE projects, raising capital is often achieved by increasing energy bills or taxes. To explore this issue, the study surveyed 192 small and medium-sized businesses using the contingent valuation method. The results indicate that while most businesses are aware of solar and wind energy sources and the importance of combating climate change, half of them are not willing to compromise their current energy use and do not support an increase in utility bills or taxes to finance GE projects. However, older businesses tend to be more willing to pay a premium for GE compared to younger businesses. Overall, majority of the businesses support a voluntary increase in electricity bills. The findings highlight the crucial role of current electricity bills and knowledge about GE sources in shaping customers' willingness to pay. This study contributes to the literature on energy finance and the contingent valuation method in the context of green energy in the UAE.
Three-dimensional CFD-solid mechanics analysis of the hydrogen internal combustion engine piston subjected to thermomechanical loads Maher A.R. Sadiq Al-Baghdadi; Sahib Shihab Ahmed; Nabeel Abdulhadi Ghyadh
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52496

Abstract

Fueling internal combustion engines with hydrogen is one of the most recommended alternative fuels today in order to combat the energy crisis, pollution problems, and climate change. Despite all the advantages of hydrogen fuel, it produces a higher combustion temperature than gasoline. In an internal combustion engine, the piston is among the numerous complex and highly loaded components. Piston surfaces are directly affected by combustion flames, making them critical components of engines. To examine the stress distribution and specify the critical fracture zones in the piston for hydrogen fuel engines, a three-dimensional CFD-solid-mechanics model of the internal combustion engine piston subjected to real thermomechanical loads was analyzed numerically to investigate the distribution of the temperature on the piston body, the interrelated thermomechanical deformations map, and the pattern of the stresses when fueling the engine with hydrogen fuel. With the aid of multiphysics COMSOL software, the CFD-solid-mechanics equations were solved with high accuracy. Despite the increase in pressure on the piston and its temperature when the engine is running on hydrogen fuel, the results show that the hydrogen fuel engine piston can withstand, safely, the thermomechanical loads. In comparison to gasoline fuel, hydrogen fuel caused a deformation of 0.34 mm, an increase of 17%. This deformation is within safe limits, with an average clearance of 0.867 mm between the cylinder liner and piston.
Optimal power flow solutions to power systems with wind energy using a highly effective meta-heuristic algorithm Thi Minh Chau Le; Xuan Chau Le; Ngoc Nguyen Phuong Huynh; Anh Tuan Doan; Thanh Viet Dinh; Minh Quan Duong
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51375

Abstract

This paper implements two novel meta-heuristic algorithms, including the Coati optimization algorithm (COA) and War strategy optimization (WSO) for determining the optimal solutions to the optimal power flow problem incorporating the use of wind turbines (WTs). Two objective functions are considered in this study, including minimizing the entire electricity generation expenditure (EEGE) with the value point effect and minimizing the voltage fluctuation index (VFI). IEEE 30-bus system is chosen to conduct the whole study and validate the efficiency of the two applied methods. Furthermore, DFIG WTs are used in grids with varying power output and power factor ranges. The comparison of the results obtained from the two methods in all case studies reveals that WSO is vastly superior to COA in almost all aspects. In addition, the positive contributions of WTs to the EEGE and VFI while they are properly placed in the grid are also clarified by using WSO. As a result, WSO is acknowledged as a highly effective search method for dealing with such optimal power flow (OPF) problems considering the presence of renewable energy sources.
Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier Thanh Xuan Nguyen-Thi; Thi Minh Tu Bui; Van Ga Bui
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53994

Abstract

Refuse-derived fuel (RDF) made from the mixture of wood and loose rice husk increases the porosity of the fuel in the furnace to facilitate the gasification process. Simulation results show that CO is concentrated in the incomplete combustion zone and CO2 forms mainly in the fully burned area; CH4 forms in the reduction region, while H2 forms in the region of high temperature of the furnace. When the mixture composition was f=0.3, the CO concentration in the syngas reached about 21%, the H2 concentration reached about 2% and the CH4 concentration was too low to be ignored. When the mixture composition increased to f = 0.5, the CO concentration reached about 26%, the H2 concentration remained almost unchanged and the CH4 content increased to 6%. The calorific value of the syngas reached a maximum when f = 0.5 and the temperature of the reduction zone is in the range of 900K to 1200K. Air humidity affects CO concentration but not much on CH4 and H2 concentration as well as the syngas calorific value. The difference between simulation and experimental results is not more than 10% for CH4 concentration and not more than 14% for CO2 concentration. The power of the spark ignition engine is reduced by 30% when running on syngas compared to when running on gasoline.
Removal efficiency and reaction kinetics of phenolic compounds in refinery wastewater by nano catalytic wet oxidation Yousif S. Issa; Khaleel I. Hamad; Rafi J. Algawi; Jasim Humadi; Sara Al-Salihi; Mustafa A. Ahmed; Ahmed A. Hassan; Abdul-Kareem Abd Jasim
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52044

Abstract

A novel nano-catalyst based on iron oxide (MnO2/Fe2O3) was developed to promote wet oxidation of phenol. MnO2 was doped in Fe2O3 matrix to prepare composite nano-catalyst with different doping percentage (0, 2 and 5%). The catalytic phenol oxidation was conducted under different reaction temperatures and residence times. To evaluate the optimal kinetic parameters aiming to maximize phenol removal under the optimal conditions for the catalytic wet phenol oxidation process, modeling was applied on the batch reactor using the novel synthesis nano-catalyst (MnO2/Fe2O3) and the model developed was fed with the experimental data. gPROMS package was used to model the process of phenol oxidation and to optimize the experimental data. The error predicted between the simulated and experimental data was less than 5%. The optimal operating conditions were 294 min residence time, 70oC reaction temperature, and 764 ppm initial concentration of phenol over the prepared 5% MnO2/Fe2O3. Running of wet oxidation of phenol under the optimal operating conditions resulted in 98% removal of phenol from refinery wastewater.
Utilization of the spent catalyst as a raw material for rechargeable battery production: The effect of leaching time, type, and concentration of organic acids Tabita Kristina Mora Ayu Panggabean; Ratna Frida Susanti; Widi Astuti; Himawan Tri Bayu Murti Petrus; Anastasia Prima Kristijarti; Kevin Cleary Wanta
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51353

Abstract

This study examines the potential use of the spent catalyst as a raw material for rechargeable batteries. The spent catalyst Ni/γ-Al2O3 still contains relatively high amounts of nickel. This indicates the potential use of the spent catalyst to be leached and purified for synthesizing nickel-based compounds so that it can be applied to rechargeable battery cathodes. In this study, the spent catalyst leaching process employed four types of organic acids: citric acid, lactic acid, oxalic acid, and acetic acid. The spent catalyst was leached under atmospheric conditions and room temperature. Organic acid concentrations were also varied at 0.1, 0.5, 1, and 2 M. The leaching process took place for 240 minutes, where sampling was conducted periodically at 30, 60, 120, 180, and 240 minutes. Experimental results showed that Ni (II) and Al (III) ions were successfully leached to the maximum when using 2M citric acids at a leaching time of 240 minutes. The conditions succeeded in leaching Ni (II) and Al (III) ions of 357.8 and 1,975.4 ppm, respectively. Organic acid, notably citric acid, has excellent potential for further development. Citric acid, as a solvent, has the ability to leach metal ions with high recovery. In addition, this acid is categorized as an eco-friendly and green solvent compared to inorganic acid. Thus, the leaching process can take place without harming the environment.
Response surface optimization and social impact evaluation of Houttuynia cordata Thunb solar drying technology for community enterprise in Chiangrai, Thailand Torpong Kreetachat; Saksit Imman; Kowit Suwannahong; Surachai Wongcharee; Nopparat Suriyachai
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52402

Abstract

Drying has emerged as one of the most important ways of preserving high-quality and quantity food goods. A force convection solar drying is considered an ecologically and environmentally friendly alternative. This research presents parameter optimization of greenhouse tunnel dryer  of  Houttuynia cordata Thunb (H. cordata) using response surface methodology with the assessment of economic feasibility and social return on invesment. The influence parameters of the drying process were evaluated to obtain maximum efficiency. The individual parameters were temperature (40 – 60 °C), material length (10 – 30 cm), and relative humidity (30 – 50%). The individual parameters of drying temperature showed an extreme effect on the response of moisture content and color value change, while the relative humidity had only an influence on moisture content. On the other hand, the parameter of material length was not significance in both responses. When compared to open-air drying, solar drying reduced the drying time of H. cordata by 57.14%. The payback period of the dryer was found to be 2.5 years. Furthermore, the results reveal that the social return on investment ratio in 2021 was 2.18, then increasing to 2.52 in 2022 and 2.91 in 2023. According to the findings, solar drying technology has the potential to be an adequate product quality improvement technology for H. cordata. It is a feasible drying technology in terms of economic evaluation.

Page 1 of 2 | Total Record : 16


Filter by Year

2023 2023


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue