cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 7 Documents
Search results for , issue "Vol 2, No 2 (2013): July 2013" : 7 Documents clear
Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel M. Hossain; S.M.A Sujan; M.S. Jamal
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.75-80

Abstract

Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT) most effective for improvement of the oxidation stability of petro diesel, whereas  tert butylhydroquinone (TBHQ) showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration of antioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidation stability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751). The performance of antioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels). The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oil biodiesel.
Design and Performance Analysis of a Biodiesel Engine Driven Refrigeration System for Vaccine Storage K Kamsuk; D Damrongsak; N Tippayawong
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.117-124

Abstract

A compact, stand-alone, refrigeration module powered by a small biodiesel engine for vaccine storage in rural use was proposed. The engine was of single cylinder, four-stroke, direct injection with displacement of 0.296 cm3 and compression ratio of 20:1. The refrigeration system was modified from an automotive vapor compression system. The system performance was analytically investigated. From the simulation, it was found to have acceptable operation over a range of speeds and loads. Performance of the system in terms of fuel consumption and torque tended to decrease with an increase in engine speed. The modular system was able to operate at cooling loads above 4.6 kW, with proper speed ratio between the engine and the compressor. Overall, primary energy ratio of the refrigeration was found to be maximum at 0.54.
Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite Moh Djaeni; S.B. Sasongko; A.J.B. van Boxtel
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.81-86

Abstract

Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60%) and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified by zeolite. As a result humidity of air can be reduced up to 0.1 ppm. So, for heat sensitive products, the drying process can be performed in low or medium temperature with high driving force. The study has been conducted in three steps: designing the dryer, performing laboratory scale equipment (tray, spray, and fluidised bed dryers with zeolite), and evaluating the dryer performance based on energy efficiency and product quality. Results showed that the energy efficiency of drying process is 15-20% higher than that of conventional dryer. In additon, the dryer can speed up drying time as well as retaining product quality.
Renewable Energy in Eastern North Africa in Terms of Patterns of Coupling to Czisch European HVDC Super Grid K Boubaker; A Colantoni; E Allegrini
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.125-129

Abstract

In this study, wind energy potential and perspectives in the eastern North Africa region (Tunisia) have been investigated in terms of connectivity to the projected Czisch European HVDC super grid. A simplified extracted scheme of this grid has been used as a guide to optimize transportation efficiency through the whole net. Wind, as an available and easily exploitable renewable energy was showing to have a promising future for 2025 horizon in the context of a connected net with the European Union, despite local sub-grids disparities. This is also to emphasis HVDC technology adequacy for economical power transmission over very long distances and connection between differently established grids.
Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview D. Radhika; A. S. Nesaraj
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.87-95

Abstract

This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs). LT-SOFC is a new trend in SOFC technology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.
Performance of Microbial Fuel Cell for Wastewater Treatment and Electricity Generation Z Yavari; H Izanloo; K Naddafi; H.R Tashauoei; M Khazaei
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.131-135

Abstract

Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC) is a promising method to obtain electricity from organic matter and wastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was an effective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE) affected by organic loading rate (OLR) and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment
A Feasibility Study of Biogas Technology to Solving Peri-urban Sanitation Problems in Developing Countries. A Case for Harare, Zimbabwe G Sibanda; D Musademba; H.C. Chihobo; L Zanamwe
International Journal of Renewable Energy Development Vol 2, No 2 (2013): July 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.2.97-104

Abstract

This study investigated the feasibility of converting organic waste into energy using biogas technology to address sanitation problems in peri-urban suburbs of Harare, Zimbabwe. These suburbs with an estimated population of 156.975 are unique in that they are not connected to the Harare main water sewer system. A baseline survey was conducted to determine the quantity of biodegradable human and kitchen waste (N=60). Biodigester sizing and costing was done for various scenarios mainly household standalone, single centralised suburb and combined suburbs centralised biogas models. In addition potential biogas conversion to electricity was done for single centralised suburb and combined suburbs centralised biogas models. This was followed by a cost benefit analysis of employing combined suburbs biogas technology. A combined suburbs centralised biogas model was found to be the most feasible scenario producing 7378 m3 of biogas per day with electricity production capacity of 384 kW.There was a potential of wood savings of 6129 tonnes/year, paraffin savings of 2.556 tonnes/year and greenhouse benefits of 980 tonnes of CO2 equivalent emissions/ year and which would attract U$2940 from carbon credits sales per year. The study recommended the adoption of the biogas technology because of its potential toaddress both economic and sanitation challenges being faced by local authorities in developing countries particularly, improved hygienic conditions, energy supply chronic epidemics and sewer reticulation.

Page 1 of 1 | Total Record : 7


Filter by Year

2013 2013


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue