cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 8 Documents
Search results for , issue "Vol 8, No 3 (2019): October 2019" : 8 Documents clear
Agro-residues and weed biomass as a source bioenergy: Implications for sustainable management and valorization of low-value biowastes Utsab Deb; Nilutpal Bhuyan; Satya Sundar Bhattacharya; Rupam Kataki
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.243-251

Abstract

Biomass resources are gaining increasing importance world over due to their ease of conversion to various energy product in the face of depleting fossil fuel store and increasing environmental concerns over their use. The present work elucidates different physico-chemical properties of three biomasses, paddy straw (PS)- an agricultural residue, spent paddy straw obtained after mushroom cultivation (SS), and a noxious weed (Parthenium hysterophorus; PR) to understand their properties and to explore the feasibility of using them as feedstocks in different biomass to bioenergy conversion routes. In addition to physico-chemical analysis, biochemical analysis of these biomasses along with XRD, thermogravimetric analysis, FTIR and SEM analysis have been carried out. Present study suggests that PS is a better choice as feedstock compared to both PR and SS. The calorific value to ash content ratio is more in PS (1.13) as compared to PR (1.06) and SS (0.84). Thus, it may be inferred that the biomasses in question are at par with commonly used bio-energy feedstocks like sugarcane bagasse and corn cob. ©2019. CBIORE-IJRED. All rights reserved
Numerical Study of Effect of Blade Twist Modifications on the Aerodynamic Performance of Wind Turbine Wiroj Beabpimai; Tawit Chitsomboon
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.285-292

Abstract

This paper aims to investigate aerodynamic performance of a wind turbine blade with twist modifications using computational fluid dynamics (CFD). The phenomenon of 3D stall-delay effect in relation to blade twist is the key feature to be investigated in order to improve efficiency of a wind turbine. The NREL (National Renewable Energy Laboratory) Phase VI wind turbine rotor was used for validation and as the baseline rotor. The baseline blade geometry was modified by increasing/decreasing the twist angles in the inboard, mid-board and outboard regions of the blade in the form of a symmetrical curve with maximum twist angle of 3°. The steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations with the k-ω Shear Stress Transport (SST) turbulence closure model were used for the calculations at wind speeds ranging from 5-20 m/s. The computational results for the baseline Phase VI rotor were validated against experimental data and a good agreement was found. The computational results for the modified blades were compared against those of the baseline blade. It was found that increase of annual energy production of up to 5.1% could be achieved by this modification technique.  ©2019. CBIORE-IJRED. All rights reserved
The Development of A Flexible Battery by Using A Stainless Mesh Anode Kanawe Iwai; Teppei Tamura; Dang-Trang Nguyen; Kozo Taguchi
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.225-229

Abstract

We have developed a compact and flexible battery, which composes three parts: (1) an anode electrode made for stainless mesh which was heat-treated for 30 min at 500℃ with coated carbon nanotube (CNT), (2) a piece of paper filter-based membrane with the pore size of 0.025 µm and the thickness of 100 µm, and (3) a cathode electrode coated potassium ferricyanide. The battery can generate electricity activated by adding  sodium chloride (NaCl) solution to the anode. The battery has a NaCl concentration-dependence characteristic. In this research, we tested 0.5, 1, 3, 5, and 10% NaCl solution, respectively. At 3% NaCl concentration, the maximum power density and current density of 42.3 µW/cm2 and 228 µA/cm2 were obtained, respectively. After the experiments, there was a blue material encountered on the anode surface. By using EDS to analyze the blue material, it could be confirmed that the blue material was ferric ferrocyanide (Prussian blue). The operation principle of this battery was proposed as follows. First, on the anode side, the injected sodium chloride solution oxidizes the stainless mesh surface, then ferric ions and electrons are released. Second, on the cathode side, ferricyanide ions are reduced to ferrocyanide ions by electrons coming from the anode through the external circuit. Simultaneously, ferric ions react with ferrocyanide ions to produce Prussian blue and generate more electrons. This battery can be potentially utilized for applications that require on-demand, disposable, and flexible characteristics. ©2019. CBIORE-IJRED. All rights reserved
Economic Analysis and Performance of PV Plants: An Application in Kurdistan Region of Iraq Olusola Bamisile; Foyin Olubiyo; Mustafa Dagbasi; Humphrey Adun; Ifeoluwa Wole-Osho
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.293-301

Abstract

In this study, photovoltaic (PV) technology development over the years is reviewed. The use of PV power plants to solve inadequate power supply in Kurdistan is also analysed. PV power application is one of the most developed renewable energy applications but still not commercialized in somw countries. In this paper, three different locations will be evaluated in Kurdistan for PV plant installation. The research will investigate the best location for PV plant installation in Kurdistan, check the viability of the proposed plants and compare the performance of a fixed and a double axis tracking system. A 10 MW PV plant is developed and simulated based on economic terms. The results from the analysis shows that the simple payback period for a 10 MW PV plant in all the locations considered is between 6.8 and 7.2 years. Also, the installation with two-axis tracking system gave the lowest simple payback period (6.8 years). The PV plant is viable considering other economic indicators like; IRR, NPV, annual life cycle savings and BCR. The yearly savings of the system for one of the locations considered is US$1,573,327 with a dual axis tracking system. ©2019. CBIORE-IJRED. All rights reserved
Two-Phase Expander Approach for Next Generation of Heat Recovery Systems Angad S Panesar; Marco Bernagozzi
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.203-213

Abstract

This study presents the numerical adaptations to the semi-empirical expander model in order to examine the feasibility of piston expanders under off-design and two-phase scenarios. This expander model considers supply valve pressure drop, condensation phenomena, heat losses, leakage losses and friction losses. Using Aspen HYSYS©, the expander model is utilised in simulating the next generation of integrated engine cooling and exhaust heat recovery system for future heavy-duty engines. The heat recovery system utilises water-propanol working fluid mixture and consists of independent high pressure (HP) and low pressure (LP) expander. The results of off‑design and two-phase operation are presented in terms of expander efficiency and the different sources of loss, under two distinctive engine speed-load conditions. The heat recovery system, operating with the LP expander at two-phase and the HP expander at superheated condition, represented the design point condition. At the design point, the system provided 15.9 kW of net power, with an overall conversion efficiency of 11.4%, representing 10% of additional engine crankshaft power. At the extreme off-design condition, the two-phase expander operation improved the system performance as a result of the nullification of leakage losses due to the much denser working fluid. The optimised two-phase operation of the LP expander (x=0.55) and the HP expander (x=0.9) at the extreme-off design condition improved the system power by nearly 50% (17.4 vs. 11.7 kW) compared to the reference state. Finally, adapting piston air motors as two-phase expanders for experimental evaluation and reduction in frictional losses was a recommended research direction. ©2019. CBIORE-IJRED. All rights reserved
Integration of 5G Technologies in Smart Grid Communication-A Short Survey Yaspy Joshva Chandrasekaran; Shine Let Gunamony; Benin Pratap Chandran
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.275-283

Abstract

Smart grid is an intelligent power distribution system that employs dual communication between the energy devices and the substation. Dual communication helps to overseer the internet access points, energy meters, and power demand of the entire grid. Deployment of advanced communication and control technologies makes smart grid system efficient for energy availability and low-cost maintenance. Appropriate algorithms are analyzed first for the convenient grid to have proper routing and security with a high-level of power transmission and distribution. Information and Communication Technology plays a significant role in monitoring, demand response, and control of the energy distribution. This paper presents a broad review of communication and network technologies with regard to Internet of Things, Machine to Machine Communication, and Cognitive radio terminologies which comprises 5G technology. Networks suitable for future smart-grid are compared with respect to standard protocols, data rate, throughput, delay, security, and routing. Approaches adopted for the smart-grid system has been commended based on the performance and the parameters observed. ©2019. CBIORE-IJRED. All rights reserved
Study effect of extreme wind direction change on 3-bladed horizontal axis wind turbine Le Quang Sang; Takao Maeda; Yasunari Kamada
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.261-266

Abstract

The Horizontal Axis Wind Turbines (HAWT) are used very popular in the world. They were installed mainly on land. However, on the land, the wind regime change is very complex such as high turbulence and constantly changing wind direction. In the International Electrotechnical Commission (IEC) 61400-1 standard, the wind regime is devided into the normal wind conditions and the extreme wind conditions. This study will focus on the extreme wind direction change and estimate the aerodynamic forces acting on a 3-bladed HAWT under this condition. Because the extreme wind direction change may cause extreme loads and it will affect the lifetime of HAWTs. This issue is experimented in the wind tunnel in Mie University, Japan to understand these effects. The wind turbine model is the 3-bladed HAWT type and using Avistar airfoil for making blades. A 6-component balance is used to measure the forces and the moments acting on the entire wind turbine in the three directions of x, y and z-axes. This study estimates the load fluctuation of the 3-bladed wind turbine under extreme wind direction change. The results show that the yaw moment and the pitch moment under the extreme wind direction change fluctuate larger than the normal wind condition. Specifically, before the sudden wind direction change happened, the averaged maximum pitch moment MX is -1.78 Nm, and after that MX is 4.45 Nm at inrush azimuth of 0°.©2019. CBIORE-IJRED. All rights reserved
Microgrids for rural schools: An energy-education accord to curb societal challenges for sustainable rural developments Abhi Chatterjee; Alan Brent; Ramesh Rayudu; Piyush Verma
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.231-241

Abstract

Quality education and schools have a key role to play in the sustainable development of society. Unfortunately, many remote communities in developing countries fail to enjoy access to quality education due to a lack of electricity, thereby interrupting regular school services in the villages. The main objective of the paper contributes to understanding the importance of the energy-education accord, and aims to curb the social challenges prevailing in the villages. Specifically, the paper suggests a technical intervention by designing a hybrid renewable energy system for such schools. The approach is demonstrated through a case study with a load demand of approximately 4 kWh/d, comprising a class size of 40 students. A techno-economic evaluation of the energy system reveals the levelized cost of energy of the system at USD 0.22 per kWh, which may be affordable considering number of other aspects, outlined in this paper, to enable a larger uptake of such systems in developing countries. ©2019. CBIORE-IJRED. All rights reserved

Page 1 of 1 | Total Record : 8


Filter by Year

2019 2019


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue