cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 12 Documents
Search results for , issue "2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)" : 12 Documents clear
Catalytic Studies Featuring Palladium(II) Benzoylthiourea Derivative as Catalyst in Sonogashira Reaction Wan M. Khairul; Sarah Liyana Mohd Faisol; Siti Maryam Jasman; Siti Kamilah Che Soh; Mustaffa Shamsuddin
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6880.241-248

Abstract

A benzoylthiourea derivative (LTU) and its metal complexation of palladium(II) chloride (MLTU) has been successfully synthesized and characterized via typical spectroscopic and analytical techniques namely IR, 1H and 13C Nuclear Magnetic Resonance, UV-Visible and Gas Chromatography Flame Ionization Detector (GC-FID). The Infrared spectrum for LTU shows four significant bands of interest namely ν(N-H), ν(C=O), ν(C-N) and ν(C=S) and the values were observed within the range. The 1H NMR spectrum for the compound shows expected protons for N-H at δH 10.95 ppm and δH 11.15 ppm while the 13C NMR spectrum shows resonances of carbonyl (C=O) carbon and thiones (C=S) at δC 168.26 ppm and δC 180.56 ppm, respectively. From UV-Vis spectrum, it shows the presence of n-pi* and pi→pi*electronic transitions which are expected to be attributed from the phenyl ring, carbonyl (C=O) and thiones (C=S) chromophores. Complexation of LTU with palladium(II) chloride was done to afford MLTU which in turn, was tested as homogeneous catalyst in Sonogashira cross-coupling reaction. The reaction was monitored by GC-FID at 6 hours reaction period. The percentage conversion of 4-bromoacetophenone to the coupled product was 75.73% indicated that MLTU can act as an ideal potential catalyst in the Sonogashira reaction. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Kinetics and Mechanism of Mn(II) Catalyzed Periodate Oxidation of p-anisidine: Effect of pH Rajneesh Dutt Kaushik; Jaspal Singh; M. Manila; Manmeet Kaur; Prabha Singh
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6823.182-191

Abstract

The stoichiometry for the initial part of the reaction, Mn(II) catalysed periodate oxidation of p-anisidine (PMA), has been found to be 1 mol of PMA consuming 2 mol of periodate ion. The kinetic-mechanistic study of reaction in acetone-water medium was made spectrophotometrically by noting the increase in the absorbance of reaction intermediate. Reaction is first order in reactants and catalyst each. A decrease in dielectric constant of the medium results in decrease in the rate of reaction suggesting an ion-dipole type interaction. Free radical scavengers do not affect the reaction rate. A special type of rate-pH profile shows a maximum at pH = 7.0. This pH effect also suggests the involvement of at least three differently reactive reactant species in the reaction and this fact has been considered by us while deriv-ing the rate law. Under pseudo first order conditions [IO4-] >> [PMA] and in agreement with the derived rate law, the 1/kcat versus [H+] plot passes through the minimum and the results can be fitted to the equation: 1/kcat = (K2 / k K3 K4 [H+]) + {(Kw + Kb K2) / k K3 K4 Kw} + Kb [H+] / k K3 K4 Kw, where kK3K4 is the empirical composite rate constant, Kw is ionic product of water, K2 is acid dissociation constant of H4IO6- and Kb is base dissociation constant of PMA. The experimental value of [H+]min is in good agreement with the value calculated by using the derived rate law equation and is character-istic of the substrate involved relating to the base dissociation constant of PMA. The value of thermo-dynamic parameters have been evaluated. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Preparation and Characterization of Lithium Zirconium Silicate for CO2 Capture T. S. Bhosale; A. G. Gaikwad
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6646.249-262

Abstract

The samples of lithium zirconium silicate were prepared by precipitation, template and sol-gel meth-ods. The samples were prepared with several mol ratios of Li:Zr:Si. The preparation of lithium zirco-nium silicate samples by precipitation method were carried out by using the lithium nitrate, zirconyl nitrate, zirconium(IV) oxypropoxide and tetramethylorthosilicate (TEOS) as precursors. The samples of lithium zirconium silicate were prepared by using cetyltrimethyl-ammonium bromide (C-TAB) and tetramethyl ammonium hydroxide (TMAOH) by template method. The samples of lithium zirconium silicate were characterized by XRD, TEM, SEM, 29Si-MAS NMR and FTIR. The surface area, alkalinity / acidity of the samples of lithium zirconium silicate were measured. The TGA analysis of lithium zirco-nium silicate samples was done. The CO2 captured by the samples of lithium zirconium silicate was es-timated. The captured CO2 by the samples of lithium zirconium silicate was found to be in the range 3.3 to 8.6 wt%. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Liquid-liquid Slug Flow in a Microchannel Reactor and its Mass Transfer Properties - A Review Rahul Antony; M. S. Giri Nandagopal; Nidhin Sreekumar; S. Rangabhashiyam; N. Selvaraju
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6977.207-223

Abstract

Mass transfer is a basic phenomenon behind many processes like reaction, absorption, extraction etc. Mass transfer plays a significant role in microfluidic systems where the chemical / biological process systems are shrinkened down to a micro scale. Micro reactor system, with its high compatibility and performance, gains a wide interest among the researchers in the recent years. Micro structured reac-tors holds advantages over the conventional types in chemical processes. The significance of micro re-actor not limited to its scalability but to energy efficiency, on-site / on-demand production, reliability, safety, highly controlled outputs, etc. Liquid-liquid two phase reaction in a microreactor system is highly demandable when both reactants are liquids or when air medium cannot be suitable. This arti-cle overviews various liquid-liquid flow regimes in a microchannel. Discussions on the hydrodynamics of flow in micro scale are made. Considering the importance of mass transfer in liquid-liquid systems and the advantage of slug regime over other regimes, the article focuses especially on the mass trans-fer between two liquid phases in slug flow and the details of experimental studies carried out in this area. The advantages of slug flow over other flow regimes in micro structured reactor applications are showcased. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Catalytic Pyrolysis and a Pyrolysis Kinetic Study of Shredded Printed Circuit Board for Fuel Recovery Chee Hoe Ng; Ali Salmiaton; Hashim Hizam
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.7148.224-240

Abstract

Scrap printed circuit boards (PCBs) are the most abundant wastes that can be found in the landfills in Malaysia and this disposal certainly poses serious detrimental to the environment. This research aims to investigate optimum temperature for pyrolyzing waste PCBs, find out the best catalyst to be used in accelerating PCBs’ pyrolysis, select suitable ratio of catalyst to PCBs for higher oil yield and examine kinetics pyrolysis of the waste PCBs’ decomposition. Operating temperatures ranged from 200 to 350 ˚C of PCB’s pyrolysis were conducted with the optimum temperature obtained was 275 ˚C. Fluid cata-lytic cracking (FCC) catalyst, zeolite socony mobil-5 (ZSM-5), H-Y-type zeolite and dolomite were used to accelerate PCB’s pyrolysis at 275 ˚C and FCC was identified as the best catalyst to be used. Differ-ent ratios of FCC to waste PCBs such as 10:90, 20:80, 30:70, 40:60 and 50:50 were applied in the pyro-lysis at 275 ˚C and ratio of 10:90 was selected as the suitable ratio to be utilized for maximum yield. The kinetic study was done through thermogravimetric analysis on waste PCBs under various heating rates and different particle sizes. The GC-MS analysis revealed that compounds detected in the pyro-oil have the potential to be used as fuel. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Backmatter (Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.19430

Abstract

Backmatter (Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Effect of Calcination Temperature on Surface Morphology and Photocatalytic Activity in TiO2 Thin Film Prepared by Spin Coating Technique Krishna Krishna Mothi; G. Soumya; S. Sugunan
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.5733.175-181

Abstract

TiO2 thin films were deposited on glass substrate using Sol-Gel derived precursor by Spin Coating technique at different calcination temperatures. Structural identity of the prepared films was con- firmed by powder X-ray diffraction measurements. Morphology of the films was monitored using Atomic force microscopy and it was observed that calcination temperature of 400 °C favored TiO2 nano- fibers. Photocatalytic activity of the films was checked by observing the degradation of herbicide Atrazine in UV region and the percentage of degradation was analyzed by HPLC method. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Isothermal Kinetics of Diesel Soot Oxidation over La0.7K0.3ZnOy Catalysts Ram Prasad; Abhishek Kumar; Anupama Mishra
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6773.192-200

Abstract

This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions (320-350 oC). Isothermal kinetics data were collected in a mini-semi-batch reactor. Experiments were performed over the best selected catalyst composition La0.7K0.3ZnOy prepared by sol-gel method. Characterization of the catalyst by XRD and FTIR confirmed that La1-xKxZnOy did not exhibit perovskite phase but formed mixed metal oxides. 110 mg of the catalyst-soot mixture in tight contact (10:1 ratio) was taken in order to determine the kinetic model, activation energy and Arrhenius constant of the oxidation reaction under the high air flow rate assuming pseudo first order reaction. The activation energy and Arrhenius constant were found to be 138 kJ/mol and 6.46x1010 min-1, respectively. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Immobilization of Pepsin onto Chitosan Silica Nanobeads with Glutaraldehyde as Crosslink Agent Sari Edi Cahyaningrum; Maria Monica Sianita
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.7060.263-269

Abstract

Glutaraldehyde crosslinked chitosan - silica nanobeads have been used as a support in the immobiliza-tion process of pepsin. The effect of pH, pepsin concentration, and temperature on the characteristics of both free and immobilized pepsin had been investigated in this study. The results showed that the im-mobilized pepsin has wider pH range, better capacity, performance and stability to high temperatures compared with those of free pepsin. The immobilized pepsin can be used for 8 to 10 times at which the activity remains 20%, whereas the free pepsin can only be used once. These results suggested promis-ing applications of immobilized enzyme as biocatalyst. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
One-pot Synthesis of Pt Catalysts Supported on Al-modified TiO2 Rebecca E. Olsen; Calvin H. Bartholomew; David B. Enfield; Brian F. Woodfield
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6734.156-167

Abstract

A facile, industrially viable, one-pot synthesis of 0.5-8 wt% Pt supported on 22 mol% Al-modified ana-tase with high surface area and thermal stability is presented. Four pathways were studied to deter-mine the effects of support properties on catalyst dispersion, and the highest dispersions were observed for high surface area materials containing 5-coordinate anatase. Systematic study of preparation vari-ables shows that low drying temperatures, slow calcination ramp rates, and slow reduction ramp rates further increased Pt dispersion and resulted in a more uniform Pt size distribution. Pt dispersions as high as 54% have been obtained using the one-pot method and 59% for Pt catalysts synthesized by dry impregnation. Statistically designed studies are needed to more completely determine the effects of synthesis variables and to optimize the dispersion and reduction of Pt supported on Al-modified ana-tase. Results presented in this paper show that this one-pot method and dry impregnation method us-ing our Al-modified anatase support are promising syntheses of highly dispersed Pt supported on stabi-lized titania. Our results demonstrate that the alumina-stabilized anatase support is superior to other anatase supports for (1) obtaining high Pt dispersions, i.e. more efficiently utilizing this expensive pre-cious metal, and (2) processes in which thermal stability is important due to its constant phase and pore structures at high temperatures. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

Page 1 of 2 | Total Record : 12


Filter by Year

2014 2014


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 2 Year 2026 (August 2026) (Issue in Progress) 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) 2026: Just Accepted Manuscript and Article In Press 2026 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue