cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 24 Documents
Search results for , issue "Vol 3, No 2 (2012)" : 24 Documents clear
Development of Swept-sine Excitation Control Method to Minimize the FRF Measurement Error Asmara Yanto; Zainal Abidin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2012.v3.57-64

Abstract

Shaker excitation in FRF (Frequency Response Function) measurement of a testing system can be controlled by using swept-sine signal source in a signal generator and it is called with swept-sine excitation. FRF’s magnitude error of the system which is obtained from the FRF measurement using swept-sine excitation depends on swept function of swept-sine signal. In this paper, swept-sinesignals using linear and S535 swept functions have been simulated to controlling swept-sine excitation in the FRF measurement of SDOF (Single Degree of Freedom) system. Linear swept is swept function of swept-sine signal which is often used in the FRF measurement and S535swept is a swept function has been developed in this paper. Based on simulation results, the FRF’s magnitude error at system’s resonant frequency which was obtained from the FRF measurement using linear swept-sine excitation can be minimized by redoing the FRF measurement using S535 swept-sine excitation.
Analysis and Development of Walking Algorithm Kinematic Model for 5-Degree of Freedom Bipedal Robot Gerald Wahyudi Setiono; Prianggada Indra Tanaya; Henricus Riyanto Hendradji
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2012.v3.103-110

Abstract

A design of walking diagram and the calculation of a bipedal robot have been developed. The bipedal robot was designed and constructed with several kinds of servo bracket for the legs, two feet and a hip. Each of the bipedal robot leg was 5-degrees of freedom, three pitches (hip joint, knee joint and ankle joint) and two rolls (hip joint and ankle joint). The walking algorithm of this bipedal robot was based on the triangle formulation of cosine law to get the angle value at each joint. The hip height, height of the swinging leg and the step distance are derived based on linear equation. This paper discussed the kinematic model analysis and the development of the walking diagram of the bipedal robot. Kinematics equations were derived, the joint angles were simulated and coded into Arduino board to be executed to the robot.
Effect of Contact Pressure on the Resistance Contact Value and Temperature Changes in Copper Busbar Connection Agus Risdiyanto; Noviadi Arief Rachman; Maulana Arifin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2012.v3.73-80

Abstract

This paper discussed the influence of tightness or contacts pressure on copper busbar joints to determine changes in the value of the initial contact resistance and the maximum temperature at the joint due to high current load. The test sample was copper busbar 3 x 30 mm with configuration of bolted overlapping joint. Increasing contact pressure at the joint was measured to find out its effect on the value of contact resistance. The applied pressure was 6 to 36 MPa. Procedure of contact resistance measurement refer to the ASTM B539 standard using four-wire method. The sample subsequently loaded with the current of 350 A for 60 minutes and the maximum temperature at the joint was measured. The result showed that increasing contact pressure at the busbar joint will reduce the contact resistance and maximum temperature. The increase of contact pressure from 6 to 30 MPa causes decreasing contact resistance from 16 μΩ to 11 μΩ. Further increasing of contact pressure more than 30 MPa did not affect the contact resistance significantly. The lowest temperatur of busbar joint of 54°C was reached at a contact pressure of 36 Mpa.
Preface MEV Vol 3 Iss 2 Tinton Dwi Atmaja
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2012.v3.%p

Abstract

Page 3 of 3 | Total Record : 24