cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 24 Documents
Search results for , issue "Vol 4, No 2 (2013)" : 24 Documents clear
Front Cover MEV Vol 4 Iss 2 Aam Muharam
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2013.v4.%p

Abstract

MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car Seno Aji; Dwi Ajiatmo; Imam Robandi; Heri Suryoatmojo
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2013.v4.127-134

Abstract

This paper presents a control called Maximum Power Point Tracking (MPPT) for photovoltaic (PV) system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC) is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate) on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.
Preface MEV Vol 4 Iss 2 Aam Muharam
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2013.v4.%p

Abstract

Design and Development of a Control System for Nanofiber Electrospinning Dayat Kurniawan; Purwoko Adhi; Muhammad Nasir
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2013.v4.65-74

Abstract

This paper describes the development of a control hardware and software for a nano-fiber electro-spinning system. The hardware consists of motor driver boards, a high DC voltage board, and a main control board. The user interface software on PC is developed using Visual Studio C # 2010 express edition. The motor driver boards are controlled by an ATmega8 microcontroller IC, while the main board is controlled by an ATmega 128 microcontroller IC. Communication between the main board and the motor driver boards uses the inter integrated circuit (I2C), while communication between PC and the main board uses a serial communication at a baud rate of 9,600 bps. The high DC voltage generator is designed to have an output of 0-25 kV. High DC voltage output is configurable by giving a combination of low logic and high impedance into a six bit input. The result show that maximum output of high DC voltage is 25.025 kV with formula of curve is y = 1x – 0.0244 with R2 = 0.9998 and PC software interface can work very well. Polymer flow rate can be configured from PC interface software via I2C connected to the main board. The flow rate y follows the RPM setting x, according to the formula y = 0.954x – 0.0099 with R2 = 1. The results of scanning electron microscope (SEM) for morphology analysis of PVDF copolymer composite nano-fiber shows that the average diameter of the resulted fiber is 136.43 nm, when output high DC voltage is set to 15 kV and speed of syringe pump is set to 5 RPM.  

Page 3 of 3 | Total Record : 24