cover
Contact Name
Wulandari
Contact Email
jurnal.lemigas@esdm.go.id
Phone
+6221-7394422
Journal Mail Official
jurnal.lemigas@esdm.go.id
Editorial Address
Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Scientific Contributions Oil and Gas
Published by LEMIGAS
ISSN : 20893361     EISSN : 25410520     DOI : -
The Scientific Contributions for Oil and Gas is the official journal of the Testing Center for Oil and Gas LEMIGAS for the dissemination of information on research activities, technology engineering development and laboratory testing in the oil and gas field. Manuscripts in English are accepted from all in any institutions, college and industry oil and gas throughout the country and overseas.
Articles 5 Documents
Search results for , issue "Vol 40 No 1 (2017)" : 5 Documents clear
CO-SURFACTANT POLYETHYLENE GLYCOL MONO-OLEATE IN THE ORMULATION OF NATURAL BASED-SURFACTANT FOR CHEMICAL EOR (SURFAKTAN PENDAMPING POLIETILEN GLIKOL MONO-OLEAT PADA FORMULASI SURFAKTAN BERBASIS NABATI UNTUK INJEKSI KIMIA EOR) Yani Faozani Alli; Letty Brioletty; Hestuti Eni; Yan Irawan
Scientific Contributions Oil and Gas Vol 40 No 1 (2017)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.40.1.33

Abstract

Natural-based surfactant such as methyl esther sulfonate, which is derived from palm oil, has increasingly become the focus of study for the last decade to improve oil recovery due to the abundant raw materials availability and the need for oil as a source of energy. Surfactant MES development with the targeted fluid reservoir characteristic has been conducted in the laboratory scale as well as in the field scale. In this study, the addition of polyethylene glycol mono-oleate as co-surfactant to enhanced oil recovery in the “L” oil field in Central Java was investigated in the laboratory scale through compatibility observation, IFT measurement, thermal stability and core flooding tests. The results showed that the presence of PMO improved the solubility of surfactant mixture in the water which formed one phase milky solution. Decreasing IFT as the crucial factor for surfactant flooding was also achieved until 10-3 dyne/cm and thermally stable for two months. Furthermore, core flooding experiments to study the performance of surfactant to recover oil production showed that the mixture of MES and PMO are able to enhance oil recovery until 55.35% Sor and have potential to be used as chemicals for chemical flooding in the targeted oil field. Surfaktan berbasis nabati seperti surfaktan metil ester sulfonat (MES) dari bahan minyak kelapa sawit telah menjadi fokus penelitian selama satu dekade terakhir untuk meningkatkan perolehan minyak, mengingat ketersediaan bahan baku kelapa sawit yang melimpah di Indonesia serta kebutuhan akan minyak sebagai sumber energi yang terus meningkat. Pengembangan surfaktan MES agar sesuai dengan karakteristik fluida reservoar lapangan target juga telah berhasil dilakukan dalam skala laboratorium dan skala lapangan. Pada penelitian ini, pengaruh penambahan surfaktan pendamping polietilen glikol mono-oleat (PMO) untuk meningkatkan kemampuan surfaktan dalam meningkatkan produksi minyak pada lapangan “L” di Jawa Tengah dalam skala laboratorium dilakukan melalui uji kompatibilitas, ujitegangan antarmuka (IFT), uji kestabilan termal dan uji core flooding. Hasil penelitian menunjukkan bahwa penambahan PMO sebagai surfaktan pendamping MES dapat meningkatkan kelarutan surfaktan di dalam air formasi terkait dengan keberadaan gugus etoksi yang mempunyai sifat antarmuka di dalam struktur molekul PMO. Penurunan IFT sebagai faktor penentu dalam injeksi surfaktan juga dapat dicapai hingga 10-3 dyne/cm, dan dapat bertahan hingga dua bulan pada suhu reservoar. Adapun pengujian kemampuan surfaktan dalam meningkatkan perolehan minyak melalui uji core flooding menunjukkan bahwa campuran surfaktan MES dan PMO dapat meningkatkan produksi minyak hingga 55.35% Sor dan berpotensi untuk dijadikan bahan injeksi kimia di lapangan target.
WATERFLOOD SUSCEPTIBILITY OF NGRAYONG SANDSTONE RESERVOIR IN “X”-WELL, XYZ FIELD, EAST JAVA (WATERFLOOD SUSCEPTIBILITY PADA RESERVOIR BATUPASIR NGRAYONG DI SUMUR-“X”, LAPANGAN XYZ, JAWA TIMUR) Rosidelly Rosidelly
Scientific Contributions Oil and Gas Vol 40 No 1 (2017)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.40.1.34

Abstract

Antiklinorium structures that are spreading in the area of Rembang Zone along the Central Java to East Java reflect oil traps that lay under the surface. The oil fields have been exploited since the time of the Dutch occupation leaving the water cut at above 95%. Interpretation of reserves and production forecasts made by many researchers conclude that the remaining oil is still in the range of 50% (OOIP). To overcome the problem, the Government recently encouraged researchers to conduct a comprehensive review in terms of enhanced oil recovery with the goal of increasing the oil recovery in this zone by as much as possible. The XYZ-oil field in the Rembang Zone has a widely spread reservoir sandstone in the border area of the Central Java - East Java. Reservoir rocks in this area contain calcareous and silty matrix. Clay minerals mineral that is easily removed by fluid flow so that it would create problems during the oil production process. The composition of injection water collected from several wells can also easily form slugs and scale as indicated by the occurrence of crude oil and bacteria that behave as a very corrosive substance that tends to facilitate the creation of production and equipment damage. This study conducted an experiment in enhanced oil recovery using waterflooding. To avoid the occurence of non-Darcy flow, critical velocity analysis was conducted obtaining a value of 37.6 ft/day. This velocity is defi ned as a maximum injection velocity of the water displacement in this waterflooding experiment. Based on the waterflooding experiment of X-Well in the laboratory, the injection of oil using injection water without additives led to an increase in oil recovery of 0.77% Pore Volume (%PV), while the displacement of injection water added with additives resulted in an increase in oil recovery by as much as 1.31%PV. Struktur-struktur antiklinorium yang terbentang di daerah Zona Rembang Jawa Tengah hingga Jawa Timur mencerminkan perangkap minyak yang berada di bawah permukaan. Lapangan-lapangan minyak ini sudah dieksploitasi kandungan minyaknya sejak jaman Belanda dimana pada saat ini kandungan water cut sudah di atas 95%. Dari interpretasi cadangan dan produksi yang dilakukan oleh banyak peneliti, diperkirakan minyak yang tersisa masih berada di kisaran 50% (OOIP). Untuk mengatasi hal tersebut akhirakhir ini pemerintah mendorong para peneliti agar melakukan kajian pada lapangan-lapangan minyak di zona tersebut dalam rangka peningkatan perolehan minyak secara menyeluruh dengan target perolehan minyak yang sebesar-besarnya. Lapangan minyak XYZ yang berada di Zona Rembang mempunyai reservoar batupasir yang penyebarannya cukup luas di daerah perbatasan Jawa Tengah – Jawa Timur. Batuan reservoir di daerah ini merupakan batupasir berbutir halus yang mengandung matrik gampingan dan lempungan. Mineral lempung hampir terdistribusi merata dengan kandungan kaolinit yang cukup tinggi (30% dari kandungan mineral lempungnya). Kaolinit merupakan mineral yang mudah terlepas oleh adanya aliran fluida sehingga akan menjadikan masalah sewaktu proses produksi berlangsung. Air injeksi dari beberapa sumur mengandung komposisi yang juga memudahkan terbentuknya slug dan scale seperti dijumpainya kandungan crude oil serta bakteri yang bersifat korosif sehingga cenderung memudahkan terbentuknya kerusakan formasi dan korosi pada peralatan pemboran maupun produksi.Sesuai dorongan pemerintah, studi ini dilakukan untuk melakukan percobaan dalam meningkatkan perolehan minyak dengan menggunakan metode waterflooding. Untuk menghindari terjadinya aliran non-Darcy dilakukan analisis Kecepatan Aliran Kritis (Critical Velocity) dimana hasilnya diperoleh = 37.6 ft/day, yang ditetapkan sebagai kecepatan pendesakan air injeksi maksimum dalam percobaan waterflooding. Berdasarkan percobaan waterflooding dalam sekala laboratorium pada Sumur-X, pendesakan minyak dengan air injeksi tanpa ditambah bahan aditif menghasilkan peningkatan perolehan minyak sebesar 0.77% Pore Volume (0.77%PV), sedang jika air injeksi ditambah bahan aditif peningkatan perolehan minyak dapat mencapai 1.31%PV.
BIOREMEDIATION OF PETROLEUM HYDROCARBON IN CONTAMINATED SOILS: COMPARISON OF COMPOST AND WWTP SLUDGE RESIDUAL ADDITION (BIOREMEDIASI TANAH TERCEMAR PETROLEUM HYDROCARBON: PERBANDINGAN PENAMBAHAN KOMPOS DAN LUMPUR IPAL) Cut Nanda Sari; Lina Lubnah
Scientific Contributions Oil and Gas Vol 40 No 1 (2017)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.40.1.35

Abstract

Crude oil’s processing into energy continue to increase, hence treatment for its environmental impact is needed. The objectives of the study is to determine the differences in bacteria growth rate and removal efficiency of Total Petroleum Hydrocarbon (TPH) between compost and WWTP (Waste Water Treatment Plant) sludge addition at 5% and 10% concentration levels. Those effects were acknowledged through experiments in laboratory scale using soil contaminated by 5,5% TPH within 5 weeks until it reach less than 1% as the requirement. The soil comes from Marunda Beach, compost from UPS Merdeka, WWTP sludge from Jababeka, and bacteria isolated from soil contaminated in the area surrounding refining. The treatment used in this experiment was landfarming with nutrition addition and the main variable analyzed was TPH and the microorganism population. Results of this study show that the bacteria growth rate in compost and WWTP sludge at 5% and 10% concentration each are 0,7567/weeks and 1,154/week for compost and also 0,8783/week and 1,1109/week for WWTP sludge. The TPH removal efficiency obtained was 95,32% and 96,85% for the addition of compsot as well as 91,15% and 91,02% for the addition of WWTP sludge at 5% and 10% concentrations. Base on a t-Test, the differences between all the variation of concentrations are not significant. The correlation test between TPH degradation to bacteria growth showed that there is a weak downward (negative) linear relationship. Kegiatan pengelolaan minyak bumi terus meningkat, maka dari itu dibutuhkan tindakan penanganan pemulihan kondisi lingkungan yang disebabkan oleh kegiatan tersebut. Penelitian ini bertujuan untuk mengetahui perbedaan laju pertumbuhan bakteri dan efi siensi penyisihan Total Petroleum Hydrocarbon (TPH) dengan variasi perlakuan pemberian kompos dan lumpur residu pengelolaan air limbah. Penelitian dilakukan dalam skala laboratorium dengan konsentrasi awal TPH sebesar 5,5% selama 5 minggu atau sampai TPH mencapai konsentrasi kurang dari 1% sesuai dengan baku mutu. Tanah yang digunakan berasal dari Pantai Marunda, Bekasi. Kompos berasal dari UPS (Unit Pengolah Sampah) Merdeka, Depok. Lumpur Instalasi Pengelolaan Air Limbah (IPAL) berasal dari Jababeka. Isolat bakteri yang digunakan berasal dari tanah tercemar TPH disekitar ,kilang minyak. Hasil dari penelitian menunjukkan laju pertumbuhan bakteri pada perlakuan penambahan kompos dan lumpur IPAL pada konsentrasi 5% dan 10% masing-masing adalah 0,7567/minggu dan 1,154/minggu untuk kompos, serta 0,8783/minggu dan1,1109/minggu untuk residu lumpur IPAL. Efisiensi penyisihan TPH yang diperoleh adalah 95,32% and 96,85% untuk penambahan kompos dan 91,15% dan 91,02% untuk penambahan residu lumpur IPAL pada konsentrasi 5% dan 10%. Berdasarkan hasil uji-t, perbedaan untuk masing-masing perlakuan tidaklah signifikan. Uji korelasi antara perubahan konsentrasi TPH dengan pertumbuhan bakteri menunjukkan hubungan lemah berbanding terbalik.
VARIATION OF CARBON SOURCES IN PRODUCTING RHAMNOLIPID BY Pseudomonas aeruginosa FOR MICROBIAL ENHANCED OIL RECOVER’S APPLICATION (VARIASI SUMBER KARBON PADA PRODUKSI RHAMNOLIPID OLEH Pseudomonas aeruginosa DALAM APLIKASI MICROBIAL ENHANCED OIL RECOVERY (MEOR)) Nafian Awaludin; Cut Nanda Sari
Scientific Contributions Oil and Gas Vol 40 No 1 (2017)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.40.1.36

Abstract

The decrease in oil production is caused by the ageing of oil production wells. The enhanced oil recovery (EOR) technology is proven to increase oil reserves and production in mature oil fields. One EOR technology that has proven to be efficient in increasing oil production is microbial EOR by using biosurfactant. The most effective biosurfactant is rhamnolipid produced by Pseudomonas aeruginosa, the bacteria of which can lower the interfacial tension between the petroleum and water. In biosurfactant’s production thanks to these bacteria, the substrate as the source of carbon in the fermentation process is needed. The sources of carbon used in this study are glucose, glycerol, molasses, banana peels, and waste from Pseudomonas aeruginosa by using Busnell Hass medium as a liquid medium of bacterial growth. Biosurfactant’s production results are; 74mg/L from glucose; 63mg/L from banana peels; 66mg / L from glycerol; 85mg/L from waste cooking oil; and 64mg/L of molasses with the following decreasing surface tension: 33.55 mN/m from glucose; 32.51 mN/m from banana peels; 27.55 mN/m from glycerol; 22.46 mN/m from waste cooking oil; and 31.49 mN/m from molasses. In addition, the decrease of interface tension of glucose; banana peels; glycerol; waste cooking oil; and molasses are as follows : 15.2 mN/m; 13.78 mN/m; 8:15 mN/m; 0.14 mN/m; and 11.2 mN/m respectively. Menurunnya produksi minyak bumi disebabkan karena sumur produksi yang sudah tua. Teknologi enhanced oil recovery (EOR) terbukti mampu meningkatkan cadangan dan produksi lapangan minyak mature. Salah satu teknologi EOR yang dikenal efi sien dalam meningkatkan perolehan minyak adalah microbial enhanced oil recovery menggunakan biosurfaktan. Biosurfaktan yang paling efektif adalah rhamnolipid yang dihasilkan oleh bakteri Pseudomonas aeruginosa yang dapat menurunkan tegangan antarmuka antara minyak bumi dengan air. Dalam produksi biosurfaktan oleh bakteri ini, diperlukan substrat sebagai sumber karbon dalam proses fermentasi. Sumber karbon yang digunakan pada penelitian ini adalah glukosa, gliserol, molase, kulit pisang, dan minyak jelantah. Penelitian ini bertujuan untuk mengetahui sumber karbon yang paling optimum dalam menghasilkan biosurfaktan dari Pseudomonas aeruginosa dengan menggunakan busnell hass medium sebagai media cair pertumbuhan bakteri. Produksi biosurfaktan yang dihasilkan adalah 74mg/L dari glukosa; 63mg/L dari kulit pisang; 66mg/L dari gliserol; 85mg/L dari minyak jelantah; dan 64mg/L dari molase dengan penurunan tegangan permukaan berturutturut: 33,55 mN/m dari glukosa; 32,51 mN/m dari kulit pisang; 27,55 mN/m dari gliserol; 22,46 mN/m dari minyak jelantah; dan 31,49 mN/m serta memiliki penurunan tegangan antarmuka dari glukosa; kulit pisang; glisero; minyak jelantah; dan molase berturut-turut adalah 15,2 mN/m; 13,78 mN/m; 8,15 mN/m; 0,14 mN/m; dan 11,2 mN/m.
TECHNOLOGY DEVELOPMENT ON THE USE OF DIMETHYL ETHER AS FUEL: A REVIEW (REVIEW PERKEMBANGAN TEKNOLOGI PEMANFAATAN DIMETHYL ETHER SEBAGAI BAHAN BAKAR) Riesta Anggarani; I Made K Dhiputra; Cahyo S Wibowo; Dimitri Rulianto
Scientific Contributions Oil and Gas Vol 40 No 1 (2017)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.40.1.37

Abstract

Researchers have started focusing their research on alternative fuels. During the last two decades, Dimethyl Ether (DME) has emerged as a new potential fuel to substitute for oil and its derivatives. Raw materials for DME from sources such as coal, biomass, natural gas and also crude oil are spread all over the world so the interest is growing for using it as an energy source. While the technology for processing raw materials into DME is well established, the technology for DME applications for a wide range of usages is still being developed. The range of DME usage includes for automotive purposes, in industrial sectors, for household applications, and there is even fundamental research to discover more knowledge about DME safety and another technical considerations. Many research activities are now intensively being conducted in R&D centers and universities. This paper reviews progress in research activities that been used to develop the technology for DME application. Some opportunities for discovering more applications are also discussed in this paper. Penelitian mengenai bahan bakar alternatif menjadi fokus para peneliti di seluruh dunia. Dalam dua dekade ini, Dimethyl Ether (DME) muncul sebagai bahan bakar baru yang potensial untuk menggantikan bahan bakar minyak dan turunannya. Bahan baku DME yang bervariasi dari batubara, biomassa, gas alam dan juga minyak bumi menjadikannya menarik untuk dikembangkan sebagai sumber energi. Teknologi produksi DME dari beberapa bahan baku sudah tersedia secara matang, namun teknologi aplikasi DME untuk berbagai pemanfaatan masih terbatas. Pemanfaatan DME telah dilakukan pada berbagai sektor; otomotif, industri, aplikasi pada rumah tangga, dan bahkan juga penelitian fundamental untuk menggali pengetahuan yang lebih dalam tentang keselamatan penggunaan DME dan pertimbangan teknis lainnya dilakukan secara intensif di universitas serta lembaga –lembaga penelitian. Paper ini meringkas progress kegiatan penelitian yang telah dilakukan untuk mengembangkan teknologi aplikasi DME. Beberapa peluang untuk menemukan aplikasi baru didiskusikan dalam tulisan ini.

Page 1 of 1 | Total Record : 5


Filter by Year

2017 2017


Filter By Issues
All Issue Vol 49 No 1 (2026) Vol 48 No 4 (2025) Vol 48 No 3 (2025) Vol 48 No 2 (2025) Vol 48 No 1 (2025) Vol 47 No 3 (2024) Vol 47 No 2 (2024) Vol 47 No 1 (2024) Vol 46 No 3 (2023) Vol 46 No 2 (2023) Vol 46 No 1 (2023) Vol 45 No 3 (2022) Vol 45 No 2 (2022) Vol 45 No 1 (2022) Vol 44 No 3 (2021) Vol 44 No 2 (2021) Vol 44 No 1 (2021) Vol 43 No 3 (2020) Vol 43 No 2 (2020) Vol 43 No 1 (2020) Vol 42 No 3 (2019) Vol 42 No 2 (2019) Vol 42 No 1 (2019) Vol 41 No 3 (2018) Vol 41 No 2 (2018) Vol 41 No 1 (2018) Vol 40 No 3 (2017) Vol 40 No 2 (2017) Vol 40 No 1 (2017) Vol 39 No 3 (2016) Vol 39 No 2 (2016) Vol 39 No 1 (2016) Vol 38 No 3 (2015) Vol 38 No 2 (2015) Vol 38 No 1 (2015) Vol 37 No 3 (2014) Vol 37 No 2 (2014) Vol 37 No 1 (2014) Vol 36 No 3 (2013) Vol 36 No 2 (2013) Vol 36 No 1 (2013) Vol 35 No 3 (2012) Vol 35 No 2 (2012) Vol 35 No 1 (2012) Vol 34 No 3 (2011) Vol 34 No 2 (2011) Vol 34 No 1 (2011) Vol 33 No 3 (2010) Vol 33 No 2 (2010) Vol 33 No 1 (2010) Vol 32 No 3 (2009) Vol 32 No 2 (2009) Vol 32 No 1 (2009) Vol 31 No 3 (2008) Vol 31 No 2 (2008) Vol 31 No 1 (2008) Vol 30 No 3 (2007) Vol 30 No 2 (2007) Vol 30 No 1 (2007) Vol 29 No 3 (2006) Vol 29 No 2 (2006) Vol 29 No 1 (2006) Vol 28 No 3 (2005) Vol 28 No 2 (2005) Vol 28 No 1 (2005) Vol 27 No 3 (2004) Vol 27 No 2 (2004) Vol 27 No 1 (2004) Vol 26 No 2 (2003) Vol 26 No 1 (2003) Vol 25 No 3 (2002) Vol 25 No 2 (2002) Vol 25 No 1 (2002) Vol 24 No 2 (2001) Vol 24 No 1 (2001) Vol 23 No 3 (2000) Vol 23 No 2 (2000) Vol 23 No 1 (2000) Vol 22 No 2 (1999) Vol 22 No 1 (1999) Vol 21 No 2 (1998) Vol 21 No 1 (1998) Vol 18 No 2 (1995) Vol 18 No 1 (1995) Vol 17 No 1 (1994) Vol 16 No 1 (1993) Vol 15 No 1 (1992) Vol 14 No 2 (1991) Vol 14 No 1 (1991) Vol 13 No 1 (1990) Vol 12 No 1 (1989) Vol 11 No 1 (1988) Vol 10 No 3 (1987) Vol 10 No 2 (1987) Vol 10 No 1 (1987) Vol 9 No 1 (1986) Vol 8 No 2 (1985) Vol 8 No 1 (1985) Vol 7 No 2 (1984) Vol 7 No 1 (1984) Vol 6 No 1 (1983) Vol 5 No 2 (1982) Vol 5 No 1 (1982) More Issue