cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 12, No 2 (2010): Juni 2010" : 5 Documents clear
ANALISIS PENGARUH IRADIASI FLUENS NEUTRON CEPAT TERHADAP BERILIUM REFLEKTOR REAKTOR RSG-GAS Sri Kuntjoro
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 2 (2010): Juni 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (286.489 KB)

Abstract

Telah dilakukan analisis iradiasi fluens neutron cepat terhadap berilium reflektor reaktor RSG-GAS. Analisis dilakukan dengan cara melakukan pengukuran fluks neutron di posisi berilium elemen dan berilium blok yang berfungsi sebagai reflector. Selanjutnya dilakukan perhitungan untuk menentukan apakah ada pengaruh fluens neutron selama berilium berada di teras reaktor. Selain cara tersebut dilakukan pula visualisasi untuk memastikan ada tidaknya deformasi pada berilium akibat iradiasi. Hasil pengukuran fluks dan fluens neutron cepat maksimal pada daya 200 kW untuk berilium elemen posisi E-2 sebesar 2,30E+07 n/cm2s dan 4,19E+17 n/cm2, J-8 sebesar 3,70E+07 n/cm2s dan 6,74E+17 n/cm2. Hasil pengukutan pada posisi B-3 sebesar 2,19E+12 n/cm2s dan 3,99E+22 n/cm2, G-10 sebesar 2,12E+12 n/cm2s dan 3,86E+22 n/cm2, serta berilium blok posisi (5-6) sebesar 5,02E+07 n/cm2s dan 9,15E+17 n/cm2, (C-D) sebesar 2,32E+07 n/cm2s dan 4,23E+17 n/cm2. Deformasi yang diperoleh untuk berilium elemen (∆L/L) posisi E-2 sebesar 1,12E-08, J-8 sebesar 1,84E-08, B-3 sebesar 1,60E-03, posisi G-10 sebesar 1,55E-03, sedangkan pada berilium blok di posisi 5-6 sebesar 2,52E-08 dan C-D sebesar 1,13E-08. Dari hasil ini disimpulkan tidak terjadi deformasi pada berilium elemen dan berilium blok. Hasil ini dibuktikan pula dari pengamatan visual, dimana tidak terlihat adanya deformasi pada berilium tersebut.Kata kunci : fluks, fluens, berilium elemen, berilium blok   Analysis of influence fast neutron fluence irradiated to the RSG-GAS beryllium reflector have been done. Methods of analysis was carried out by measuring fluxs neutron in beryllium element and block positio that function as reflector. The calculation done for determination it is there any influence of neutron as long as beryllium in the core. Bisede that, visualization done to make sure it there is any deformation at beryllium as efect of irradiation. Fluxs and fluences of beryllium element measurement result in 200 kW reactor power are 2.30E+07 n/cm2.sec and 4.19E+17 n/cm2 in position E-2, 3.70E+07 n/cm2s and 6.74E+17 n/cm2 in position J-8, 2.19E+12 n/cm2s and 3.99E+22 n/cm2 in position B-3. Measurement results in the position G-10 are 2.12E+12 n/cm2s and 3.86E+22 n/cm2. Other result are fluxs and fluence in beryllium block, those are 5,02E+07 n/cm2s and 9,15E+17 n/cm2 in position (5-6), and 2,32E+07 n/cm2s and 4,23E+17 n/cm2 in position (C-D). Deformation (∆L/L) results for beryllium element are 1,12E-08 in position E-2, 1,84E-08 in position J-8, 1,60E-03 in position B-3, and 1,55E-03 in position G-10. In beryllium block deformation results are 2,52E-08 in position (5-6) and 1,13E-08 in position (C-D). Those results are shown unseen deformation in beryllium element and beryllium block and demonstrably by visual observation in reactor hot cell. Keywords : flux, fluence, beryllium element, beryllium block
OPTIMASI GEOMETRI TERAS REAKTOR DAN KOMPOSISI BAHAN BAKAR BERBENTUK BOLA PADA DESAIN HIGH TEMPERATURE FAST REACTOR (HTFR) Agustina Mega; Andang Widiharto; Sihana Sihana
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 2 (2010): Juni 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (233.895 KB)

Abstract

Telah dilakukan desain High Temperature Fast Reactor (HTFR) tipe pebble dengan bahan bakar uranium plutonium nitrida berpendingin Pb-Bi. Parameter yang dianalisis adalah kritikalitas teras, koefisien reaktivitas temperatur bahan bakar, koefisien reaktivitas void pendingin dan kemampuan breeding reaktor. Perhitungan dilakukan dengan paket program SRAC2K3. Dari penelitian ini diharapkan diperoleh desain teras berumur lama dan memiliki fitur keselamatan melekat. Dari penelitian ini diperoleh desain reaktor dengan diameter 520 cm dan tinggi 480 cm. Bahan bakar berbentuk pebble dengan 63 % UN-37 % PuN pada zona core dan 95,5 % UN-4,5 % PuN pada zona blanket. Reaktor tidak kritis setelah kurang lebih 800 hari dan keff pada BoL 1,078223 dan keff setelah 800 hari adalah 0,986379. Dari penelitian ini diperoleh koefisien reaktivitas temperatur bahan bakar sebesar -2,190014E-05 pada saat BoL dan -1,390773E-05 setelah 800 hari serta koefisien reaktivitas void pendingin sebesar -2,160402E-04/% void pada saat BoL dan setelah 800 hari sebesar -2,942364E-03/% void. Reaktor merupakan jenis fast breeder ditandai dengan naiknya densitas plutonium 239.Kata kunci : desain, teras, HTFR, keselamatan, umur, koefisien reaktivitas. Design of pebble bed type High Temperature Fast Reactor (HTFR) with uranium plutonium nitride fuel and Pb-Bi cooled has been done. The parameters being analyzed were core criticality, fuel temperature coefficient, void coefficient and reactor breeding ability. Calculation was done by using SRAC2K3 computer code. This research is expected to obtaine the design with long life core and inherent safety features. This research obtained core design with a diameter of 520 cm and 480 cm core high. Shaped pebble fuel bed with the 63 % UN-37 % PUN on core zone and 95.5 % UN-4.5 % Pu on blanket zone and keff value is 1.078223 with approximately 800 day of core life. The fuel temperature coefficient is -2.190014E-05 at BOL and is 1.390773E-05 at EOL and void coefficient is -2.160402E-04 /% void at BOL and is -2.942364E-03 /% void at EOL. Reactor has fast breeder feature marked by an increase in the density of plutonium 239. Keywords: design, core, HTFR, safety, core life, coefficient.
ANALISIS TRANSIEN PADA PASSIVE COMPACT MOLTEN SALT REACTOR (PCMSR) M. Makrus Imron; Andang Widiharto; Sihana Sihana
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 2 (2010): Juni 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (600.079 KB)

Abstract

Penggunaan bahan bakar cair berupa garam LiF-BeF2-ThF4-UF4 pada Passive Compact Molten Salt Reactor (PCMSR) meyebabkan pengendalian daya pada PCMSR dapat dilakukan dengan mengendalikan laju aliran bahan bakar dan pendingin. Sedangkan dari sistem keselamatan, penggunaan bahan bakar cair menjadikan PCMSR memiliki karakter keselamatan melekat (inherent safety) yang baik. Pada penelitian ini telah dilakukan analisis transien PCMSR pada tiga kondisi, yaitu: ketika terjadi perubahan laju aliran bahan bakar, ketika terjadi perubahan laju aliran pendingin dan ketika terdapat kegagalan pada sistem pelepasan panas (loss of heat sink). Penelitian dilakukan dengan memodelkan reaktor pada kondisi tunak menggunakan paket program. Standart Reactor Analysis Code (SRAC). Selanjutnya dari keluaran paket program SRAC diperoleh data data yang meliputi fluks netron,konstanta grup, kontanta peluran prekusor netron, fraksi netron kasip untuk perhitungan transien. Penelitian ini menunjukkan bahwa penurunan laju aliran bahan bakar sebesar 50 % dari laju bahan bakar sebelumnya, menyebabkan daya pada PCMSR turun menjadi 78 % dari daya sebelumnya. Dan penurunan laju aliran pendingin sebesar 50 % dari laju pendingin sebelumnya, menyebabkan daya pada PCMSR turun menjadi 63 % dari daya sebelumnya. Sedangkan pada saat terjadi loss of heat sink daya PCMSR menunjukkan penurunan.Kata kunci: PCMSR, transien, daya, laju aliran.   The use of liquid fuels in the form of molten salts LiF-BeF2-ThF4-UF4 in Passive Compact Molten Salt Reactor (PCMSR) makes power control at PCMSR can be done by controlling the flow rate of fuel and coolant. In addition, from safety systems aspect, the use of liquid fuels makes PCMSR has good inherent safety characteristics. In this study transient analysis has been carried out on three conditions of PCMSR, namely when the fuel flow rate is changing, when the coolant flow rate is changing and when there is loss of heat sink condition. This research is conducted with reactor modeling at steady state condition using Standard Reactor Analysis Code (SRAC). Next from SRAC's output, neutron flux, neutron group constant, delayed neutron constant, delayed neutron fraction are obtained for transient calculation. This study showed that the decreasing of fuel flow rate by 50 % from the previous rate of fuel, causing power on PCMSR decreased to 78 % from the previous power. And the decreasing of coolant flow rate by 50 % from the previous rate of fuel, causing power on PCMSR decreased to 63 % from the previous power. Meanwhile, in the event of loss of heat sink showed a decrease of PCMSR's power. Keywords: PCMSR, transient, power, flow rate.
PEMODELAN TERAS UNTUK ANALISIS PERHITUNGAN KONSTANTA MULTIPLIKASI REAKTOR HTR-PROTEUS Zuhair Zuhair; Suwoto Suwoto; Ign. Djoko Irianto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 2 (2010): Juni 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (394.314 KB)

Abstract

PTRKN sebagai salah satu unit kerja di BATAN dengan tugas pokok dan fungsi yang berkaitan erat dengan teknologi reaktor dan keselamatan nuklir, menaruh perhatian khusus pada konsep reaktor pebble bed. Dalam makalah ini pemodelan reaktor pebble bed HTR-PROTEUS dilakukan dengan program transport Monte Carlo MCNP5. Partikel bahan bakar berlapis TRISO dimodelkan secara detail dan eksak dimana distribusi acak partikel ini dalam bola bahan bakar didekati menggunakan array teratur kisi SC dengan fraksi packing 5,76% tanpa zona eksklusif. Model teras pebble bed didekati dengan memanfaatkan kisi teratur dari bola yang disusun sebagai kisi BCC berdasarkan sel berulang yang digenerasi dari sejumlah sel satuan. Hasil perhitungan MCNP5 memperlihatkan kesesuaian yang sangat baik dengan eksperimen, walaupun teras HTR-PROTEUS diprediksi lebih reaktif daripada pengukuran, khususnya di teras 4.2 dan 4.3. Pustaka ENDF/B-VI menunjukkan konsistensi dengan estimasi keff paling akurat dibandingkan pustaka ENDF/B-V, terutama ENDF/B-VI (66c). Deviasi estimasi keff yang dihitung dengan eksperimen dikaitkan sebagai konsekuensi dari komposisi reflektor grafit yang dispesifikasikan. Komparasi yang dibuat memperlihatkan bahwa MCNP5 menghasilkan keff teras HTR-PROTEUS lebih presisi daripada hasil dari MCNP4B dan MCNPBALL. Hasil ini menyimpulkan bahwa, sukses metodologi pemodelan ini menjustifikasi aplikasi MCNP5 untuk analisis reaktor pebble bed lainnya.Kata kunci: pemodelan teras HTR-PROTEUS, konstanta multiplikasi, MCNP5 PTRKN as a working unit in BATAN whose main duties and functions are related to reactor technology and nuclear safety, consern attention to pebble bed reactor concept. In this paper modeling of HTR-PROTEUS pebble bed reactor was done using Monte Carlo transport code MCNP5. The TRISO coated fuel particle is modeled in detailed and exact manner where random distributions of these particles in fuel pebble is approximated by using regular array of SC lattice with packing fraction of 5.76% without exclusive zone. Pebble bed core modeling was approximated by utilizing regular lattice of balls that are arranged as BCC lattice based on repeated cell generated from a numerous unit cell. The MCNP5 calculation results showed that excellent agreement with the experiment, although the HTRPROTEUS core predicted more reactive than the measurement, especially in cores 4.2 and 4.3. ENDF/B-VI library indicates consistency with the most accurate keff estimation compared to ENDF/B-V library, mainly ENDF/B-VI (66c). The deviation of calculated keff estimation with experiment is attributed to the consequence of specified graphite reflector composition. The comparison conducted shows that MCNP5 produces HTR-PROTEUS core keff is more precise compared to the results of MCNP4B and MCNP-BALL. These results concluded that the success of this modeling methodology justifies MCNP5 application for other pebble bed reactor analysis. Keywords: HTR-PROTEUS core modeling multiplication constant, MCNP5
PEMETAAN DISTRIBUSI SUHU DAN DNBR PADA PERANGKAT BAHAN BAKAR AP1000-EU Muh. Darwis Isnaini
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 2 (2010): Juni 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (313.33 KB)

Abstract

Telah dilakukan suatu pemetaan distribusi suhu dan DNBR minimum pada perangkat bahan bakar AP1000-EU. Untuk meningkatkan kemampuan SDM dalam memahami desain PLTN, diperlukan karakteristik desain yang lengkap. Dengan latar belakang bahwa, untuk mendapatkan karakteristik termohidrolika yang lengkap, maka tujuan penelitian ini melakukan pemetaan distribusi distribusi suhu meat bahan bakar, kelongsong, pendingin dan DNBR minimum serta fluks panas dari 1/8 perangkat bahan bakar AP1000-EU pada kondisi BOC daya penuh, xenon setimbang dan batang kendali terangkat dari teras. Dipilihnya objek desain AP1000-EU ini karena dokumen kontrol desain AP1000 buatan Westinghouse Amerika Serikat ini sedang dalam proses sertifikasi oleh badan regulasi Inggris (negara Eropa). Desain AP1000-EU mempunyai daya termal reaktor yang sama 3400 MWt, jumlah perangkat bahan bakar sama 157 buah, tekanan operasi 15,1 MPa. Perangkat bahan bakar AP1000-EU terdiri atas 264 rod bahan bakar dengan ukuran diameter sebesar 0,95 cm dengan panjang 426,72 cm. Perhitungan dilakukan dengan code COBRA-EN pada 1/8 perangkat bahan bakar posisi G-9 dengan faktor daya bervariasi dari 1,124 sampai 1,396, dan hasilnya dibuat peta distribusi. Dari hasil pemetaan menunjukkan bahwa suhu maksimum tengah meat sebesar 1032,95 oC jauh lebih rendah dibanding batas maksimum desain, dan DNBR minimum 4,395 jauh lebih besar dibanding batas minimum desain. Hasil pemetaan distribusi suhu, DNBR dan fluks panas pada kondisi operasi normal, daya penuh pada awal siklus, cukup untuk menjawab peta distribusi di akhir siklus bahan bakar.Kata kunci : Pemetaan, distribusi suhu, DNBR, AP1000-EU. The mapping of DNBR and temperature distribution for EU-AP1000’s fuel assembly was carried out. The development of the human resources capability to understand the NPP design, requires comprehensive characteristic design. The background of this research, is that in order to find the comprehensive NPP characteristic design, to carry out the thermalhydraulics distribution mapping during NPP operation, involving the coolant, cladding and meat temperatures, DNBR and heat flux distribution for one eighth EU-AP1000 fuel assembly on the condition of near beginning of life, hot full power, equilibrium xenon and unrodded core. The EU-AP1000 was chosen as a research object, because of the AP1000 originally was designed by Westinghouse US, however the design control document (DCD) is on approval process by UK regulatory (representative European countries). The design of EU-AP1000 has thermal power of 3400 MWt, the number of fuel assemblies of 157, operation pressure 15.1 MPa. Each EU-AP1000 fuel assembly consists of 264 fuel rods which has 0.95 cm rod diameter and 426.72 cm rod length. The calculation was done using COBRA-EN code for 1/8 of fuel assembly of G-9 position, which has variation rodwise power factor of 1.124 to 1.396, and then from the output was made be a map. The mapping result shows that the maximum meat temperature of 1032.95 oC was much lower than the maximum limit design, and the safety margin of minimum DNBR of 4.395 was much higher than the minimum limit design. The heat flux, DNBR and temperature distribution mapping result on normal operation, hot full power and near beginning of life condition were sufficient to response to the distribution mapping ones on the end of life of fuel assembly. Keywords: Mapping, DNBR, temperature distribution, EU-AP1000.

Page 1 of 1 | Total Record : 5


Filter by Year

2010 2010


Filter By Issues
All Issue Vol 26, No 2 (2024): June 2024 Vol 26, No 1 (2024): February 2024 Vol 25, No 3 (2023): October 2023 Vol 25, No 2 (2023): June 2023 Vol 25, No 1 (2023): February 2023 Vol 24, No 3 (2022): October 2022 Vol 24, No 2 (2022): June 2022 Vol 24, No 1 (2022): February (2022) Vol 23, No 3 (2021): October (2021) Vol 23, No 2 (2021): June 2021 Vol 23, No 1 (2021): FEBRUARY 2021 Vol 22, No 3 (2020): OCTOBER 2020 Vol 22, No 2 (2020): June 2020 Vol 22, No 1 (2020): February 2020 Vol 21, No 3 (2019): October 2019 Vol 21, No 2 (2019): JUNI 2019 Vol 21, No 1 (2019): February 2019 Vol 20, No 3 (2018): Oktober 2018 Vol 20, No 2 (2018): JUNI 2018 Vol 20, No 1 (2018): Februari 2018 Vol 19, No 3 (2017): Oktober 2017 Vol 19, No 2 (2017): Juni 2017 Vol 19, No 1 (2017): Februari 2017 Vol 18, No 3 (2016): Oktober 2016 Vol 18, No 2 (2016): Juni 2016 Vol 18, No 1 (2016): Februari 2016 Vol 17, No 3 (2015): Oktober 2015 Vol 17, No 2 (2015): Juni 2015 Vol 17, No 1 (2015): Pebruari 2015 Vol 16, No 3 (2014): Oktober 2014 Vol 16, No 2 (2014): Juni 2014 Vol 16, No 1 (2014): Pebruari 2014 Vol 15, No 3 (2013): Oktober 2013 Vol 15, No 2 (2013): Juni 2013 Vol 15, No 1 (2013): Pebruari 2013 Vol 14, No 3 (2012): Oktober 2012 Vol 14, No 2 (2012): Juni 2012 Vol 14, No 1 (2012): Pebruari 2012 Vol 13, No 3 (2011): Oktober 2011 Vol 13, No 2 (2011): Juni 2011 Vol 13, No 1 (2011): Pebruari 2011 Vol 12, No 3 (2010): Oktober 2010 Vol 12, No 2 (2010): Juni 2010 Vol 12, No 1 (2010): Pebruari 2010 More Issue