cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Matematika
Published by Universitas Diponegoro
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 3 Documents
Search results for , issue "Vol 2, No 3 (2013): JURNAL MATEMATIKA" : 3 Documents clear
PELABELAN DIVISOR CORDIAL PADA BEBERAPA GRAF Aptri Wijayanti; Lucia Ratnasari
Jurnal Matematika Vol 2, No 3 (2013): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK. Diberikan pemetaan bijektif f dari himpunan titik V(G) ke {1,2,…,|V|}. Pelabelan sisi induced berlabel 1 apabila f(u) dapat membagi f(v) atau f(v) dapat membagi f(u) dan berlabel 0 untuk yang lainnya, dimana u dan v adalah titik yang incident dengan sisi uv. Pemetaan f disebut pelabelan divisor cordial bila harga mutlak dari selisih banyaknya sisi yang mempunyai label 0 dan banyaknya sisi yang mempunyai label 1 kurang dari atau sama dengan 1. Graf yang memenuhi syarat pelabelan divisor cordial disebut graf divisor cordial. Pada jurnal ini dikaji bahwa graf path, graf cycle, graf wheel, graf star, graf bipartit lengkap K_(2,n), graf bistar dan graf subdivisi dari graf star (S(K_(1,n) )) merupakan graf divisor cordial.
PERLUASAN DARI RING REGULAR Devi Anastasia Shinta; YD Sumanto
Jurnal Matematika Vol 2, No 3 (2013): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.445 KB)

Abstract

Regular ring R is a nonempty set with two binary operations that satisfied ring axioms and qualifies for any x in R there is y in R such that x=xyx. Regular ring R ̃ is a ring of the set of endomorphism R^+ with identity. For any regular ring R and R' can be defined a bijective mapping from R to R' that satisfies ring homomorphism axioms or in the otherwords that mapping is an isomorphism from R to R'. By using the concept of regular ring and ring isomorphism can be determined extension of regular ring. Regular ring R is said to be embedded in regular ring R^R ̃  if there exists a subring R^0 of R^R ̃  such that R is isomorphic to R^0. Furthermore, regular ring R^R ̃  can be said as an extension of regular ring R.
PERLUASAN DARI RING REGULAR Devi Anastasia Shinta; YD Sumanto
Jurnal Matematika Vol 2, No 3 (2013): JURNAL MATEMATIKA
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.445 KB)

Abstract

Regular ring R is a nonempty set with two binary operations that satisfied ring axioms and qualifies for any x in R there is y in R such that x=xyx. Regular ring R ̃ is a ring of the set of endomorphism R^+ with identity. For any regular ring R and R' can be defined a bijective mapping from R to R' that satisfies ring homomorphism axioms or in the otherwords that mapping is an isomorphism from R to R'. By using the concept of regular ring and ring isomorphism can be determined extension of regular ring. Regular ring R is said to be embedded in regular ring R^R ̃  if there exists a subring R^0 of R^R ̃  such that R is isomorphic to R^0. Furthermore, regular ring R^R ̃  can be said as an extension of regular ring R.

Page 1 of 1 | Total Record : 3