cover
Contact Name
Juhari
Contact Email
juhari@uin-malang.ac.id
Phone
+6281336397956
Journal Mail Official
cauchy@uin-malang.ac.id
Editorial Address
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144 Faximile (+62) 341 558933
Location
Kota malang,
Jawa timur
INDONESIA
CAUCHY: Jurnal Matematika Murni dan Aplikasi
ISSN : 20860382     EISSN : 24773344     DOI : 10.18860
Core Subject : Education,
Jurnal CAUCHY secara berkala terbit dua (2) kali dalam setahun. Redaksi menerima tulisan ilmiah hasil penelitian, kajian kepustakaan, analisis dan pemecahan permasalahan di bidang Matematika (Aljabar, Analisis, Statistika, Komputasi, dan Terapan). Naskah yang diterima akan dikilas (review) oleh Mitra Bestari (reviewer) untuk dinilai substansi kelayakan naskah. Redaksi berhak mengedit naskah sejauh tidak mengubah substansi inti, hal ini dimaksudkan untuk keseragaman format dan gaya penulisan.
Arjuna Subject : -
Articles 7 Documents
Search results for , issue "Vol 2, No 3 (2012): CAUCHY" : 7 Documents clear
Akar-akar Polinomial Separable sebagai Pembentuk Perluasan Normal pada Ring Modulo Saropah, Saropah
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (137.582 KB) | DOI: 10.18860/ca.v2i3.3124

Abstract

One of the most important uses of the ring and field theory is an extension of a broader field so that a polynomial can be found to have roots. In this study researchers took modulo a prima as follows indeterminate coeffcients to search for his roots extension the solutions of that it can seen normal. A field is subject to a polynomial form a set of polynomials , where is a coefficient field its terms modulo a prime number. Of the set of polynomial exists a polynomial is irreducible, it is necessary to extension the field to know the roots of the solution. Suppose to extension of the field is a field . Field is called extension the field over a field , if the field is subfield of the field and is irreducible polynomial in then can be factored as a product of linear factors in the splitting field. If the polynomial has different roots in the splitting field the polynomial is called polynomial separable. In this study polynomial separable is contained of odd degree in which the coefficients of the tribes polynomial is contained in the extension field. Polynomial is called a polynomial separable odd because it has different roots in the factors and there is one factor in a polynomial in the field. Splitting field that contains all the set of polynomials separable is called normal extension.
Analisis Fungsi Aktivasi Jaringan Syaraf Tiruan untuk Mendeteksi Karakteristik Bentuk Gelombang Spektra Babi dan Sapi Fauzi, Shofwan Ali
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (376.74 KB) | DOI: 10.18860/ca.v2i3.3125

Abstract

Artificial Neural Network (ANN) is beginning little by little to replace the task of an expert, even with the ANN can be a tool to replace a doctor. One of kind of ANN is Backpropagation networks, this network can be used to training programs in order to be able to recognize whether it is pig or cow wave spectra. To determine the output in Backpropagation training required suitable activation functions. Therefore, in this research will be compared to some of the activation function that can be used in training. Activation functions will be tested with the ratio test to determine the interval convergence. After tested with the ratio test it was found that the activation function was the best activation function to use the Backpropagation network training, because it has a weight range that can meet the methods used in the determination of weights. When tested with the data, the activation function is able to recognize correctly all trial datas. Expected in future research to examine the weight that makes the interval training to achieve fast convergence and the error bit.
Pengembangan Model Dasar EOQ dengan Integrasi Produksi Distribusi untuk Produk Deteriorasi dengan Kebijakan Backorder Aisyah, Siti; Abusini, Sobri; Marsudi, Marsudi
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (131.602 KB) | DOI: 10.18860/ca.v2i3.3121

Abstract

Model persediaan digunakan untuk menentukan kebijakan mengawasi tingkat persediaan. Oleh sebab itu keberadaan persediaan perlu dikelola dengan baik sehingga diperoleh kinerja yang optimal. Penelitian ini bertujuan untuk menghasilkan model integrasi produksi–distribusi untuk produk deteriorasi dengan kebijakan backorder. Model persediaan Economic Order Quantity (EOQ) Single Item digunakan sebagai dasar pengembangan model. Algoritma pencarian solusi model dibuat untuk mendapatkan solusi dari model. Selain itu pada bagian akhir diberikan studi kasus implementasi model di UD. Bagus Agrista Mandiri, Batu.
Diskretisasi Model Lorenz dengan Analogi Persamaan Beda Azizah, Siti Shifatul
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3092.551 KB) | DOI: 10.18860/ca.v2i3.3126

Abstract

Diskretisasi model merupakan prosedur transformasi model kontinu ke model diskret. Diskretisasi dilakukan dengan metode analogi persamaan beda, yaitu dengan menganalogikan persamaan diferensial yang menggunakan aturan limit, dengan persamaan beda yang menggunakan beda antar titik waktu diskret. Model yang digunakan dalam penelitian ini adalah model Lorenz yang merepresentasikan aliran konveksi udara di atmosfer yang terjadi karena perbedaan suhu. Tujuan dari penelitian ini adalah mengkonstruksi model diskret Lorenz dan membandingkan perilaku antar model diskret dan model kontinu. Langkah yang dilakukan terdiri dari tiga tahap, yaitu konstruksi diskret, diskretisasi masing-masing persamaan dan validasi model diskret dengan membandingkan hasil simulasi grafik kontinu dan diskret.
Bilangan Rainbow Connection dari Hasil Operasi Penjumlahan dan Perkalian Kartesius Dua Graf Saputra, Fuad Adi
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (267.981 KB) | DOI: 10.18860/ca.v2i3.3122

Abstract

Graf dengan pewarnaan sisi disebut pelangi sisi terhubung, jika setiap titik pada graf dihubungkan oleh lintasan yang memiliki sisi-sisi dengan warna yang berbeda. Rainbow connection pada graf yang terhubung, disimbolkan oleh yaitu bilangan terkecil dari warna yang dibutuhkan untuk membuat graf menjadi pelangi sisi terhubung. Sedangkan graf dengan pewarnaan titik adalah pelangi titik terhubung, jika setiap titik pada graf dihubungkan oleh lintasan yang memiliki titik-titik interior dengan warna yang berbeda. Rainbow vertex-connection pada graf yang terhubung disimbolkan oleh yaitu bilangan terkecil dari warna yang dibutuhkan untuk membuat graf menjadi pelangi titik terhubung. Penelitian ini menganalisis besarnya bilangan dan dari graf hasil penjumlahan dan perkalian kartesius dua sebarang graf. Penjumlahan dua graf dan yang dinotasikan mempunyai himpunan titik dan himpunan sisi . Bilangan rainbow connection dari graf adalah: 1) dan adalah graf komplit, dan 2) atau adalah bukan graf komplit sedangkan bilangan rainbow vertex-connection dari graf adalah graf komplit.
Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement Hasanah, Siti Tabi'atul
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (175.812 KB) | DOI: 10.18860/ca.v2i3.3127

Abstract

Outlier is an observation that much different (extreme) from the other observational data, or data can be interpreted that do not follow the general pattern of the model. Sometimes outliers provide information that can not be provided by other data. That's why outliers should not just be eliminated. Outliers can also be an influential observation. There are many methods that can be used to detect of outliers. In previous studies done on outlier detection of linear regression. Next will be developed detection of outliers in nonlinear regression. Nonlinear regression here is devoted to multiplicative nonlinear regression. To detect is use of statistical method likelihood displacement. Statistical methods abbreviated likelihood displacement (LD) is a method to detect outliers by removing the suspected outlier data. To estimate the parameters are used to the maximum likelihood method, so we get the estimate of the maximum. By using LD method is obtained i.e likelihood displacement is thought to contain outliers. Further accuracy of LD method in detecting the outliers are shown by comparing the MSE of LD with the MSE from the regression in general. Statistic test used is Λ. Initial hypothesis was rejected when proved so is an outlier.
Proyeksi Geometri Fuzzy pada Ruang Ubaidillah, Muhammad Izzat
CAUCHY Vol 2, No 3 (2012): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (287.313 KB) | DOI: 10.18860/ca.v2i3.3123

Abstract

Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer discussion, which includes about coordinates of projection results, the mutual relation of each element and the thickness of each element. This research was conducted to describe and analyzing procedure fuzzy projective geometries on the plane and explain the differences between crisp projective geometries and fuzzy projective geometries on plane.

Page 1 of 1 | Total Record : 7


Filter by Year

2012 2012


Filter By Issues
All Issue Vol 11, No 1 (2026): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 10, No 1 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 9, No 2 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 9, No 1 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 8, No 2 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi (May 2022) (Issue in Progress) Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 1 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 6, No 4 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 6, No 3 (2020): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 6, No 2 (2020): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 6, No 1 (2019): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 5, No 4 (2019): CAUCHY Vol 5, No 4 (2019): CAUCHY Vol 5, No 3 (2018): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 5, No 3 (2018): CAUCHY Vol 5, No 2 (2018): CAUCHY Vol 5, No 1 (2017): CAUCHY Vol 4, No 4 (2017): CAUCHY Vol 4, No 3 (2016): CAUCHY Vol 4, No 2 (2016): CAUCHY Vol 4, No 1 (2015): CAUCHY Vol 3, No 4 (2015): CAUCHY Vol 3, No 3 (2014): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 3, No 3 (2014): CAUCHY Vol 3, No 2 (2014): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 3, No 2 (2014): CAUCHY Vol 3, No 1 (2013): Cauchy Vol 3, No 1 (2013): CAUCHY Vol 2, No 4 (2013): CAUCHY Vol 2, No 3 (2012): CAUCHY Vol 2, No 2 (2012): CAUCHY Vol 2, No 1 (2011): CAUCHY Vol 1, No 4 (2011): CAUCHY Vol 1, No 2 (2010): CAUCHY Vol 1, No 1 (2009): CAUCHY More Issue