cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Arjuna Subject : -
Articles 64 Documents
Search results for , issue "Vol 12, No 1: February 2023" : 64 Documents clear
Design of unknown input observer for discrete-time Takagi Sugeno implicit systems with unmeasurable premise variables Essabre, Mohamed; Hmaiddouch, Ilham; El Assoudi, Abdellatif; El Yaagoubi, El Hassane
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4107

Abstract

In this study, an unknown input observer (UIO) is developed in explicit form to estimate unmeasurable states and unknown inputs (UIs) for nonlinear implicit systems represented by the discrete-time Takagi-Sugeno implicit systems (DTSIS) in the case of unmeasurable premise variables. The method employed is based on singular value decomposition (SVD) and augmenting the state vector, which is formed partly by the system state and partly by the UIs. The convergence of the augmented state estimation error is provided by a Lyapunov function ending with solving the linear matrix inequalities (LMI). An application to a model of the rolling disc is considered to evaluate the effectiveness of the developed approach. It appears that estimated variables converge to the true variables quickly and accurately.
MOCAB/HEFT algorithm of multi radio wireless communication improved achievement assessment Nasser, Thaar Habeb; Hamza, Ekhlas Kadhum; Hasan, Ahmed Mudheher
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4078

Abstract

Network-wide conveying is vital in remote associations, and the great part of these broadcasts are built on single-channel single-radio (SC-SR) network frameworks. The problem of the current work is divided into two parts. The first part shows that increasing broadcast and redundancy lead to an increase in time consumption. The second problem is solving complexity problems when tasks are scheduled in a heterogeneous manner in a computing system, where the processors in the network may not be identical and take different time periods to carry out the same task. The goals of this work are to reduce the total cost of network-wide broadcasting to minimize the search space and to solve the complexity problem when tasks are scheduled in a heterogeneous way in the computing system. The MOCAB algorithm is used to select the best transmission path over the network in the first stage. Then, the tasks will be scheduled using the heterogeneous earliest finish time (HEFT) algorithm to extract the values of actual finish time (AFT), earliest start time (EST), and earliest finish time (EFT). The performance of the MOCAB algorithm was evaluated with that of the HEFT algorithm in terms of the delivery ratio of packets delivered. The results showed that the MOCAB algorithm outperformed the HEFT.
Exploiting artificial intelligence for combating COVID-19: a review and appraisal Sharma, Richa; Pandey, Himanshu; Agarwal, Ambuj Kumar
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4366

Abstract

Machine learning algorithms immediately became critical in the battle against the COVID-19 outbreak. Diagnoses, medicine research, an illness spread predictions, and population surveillance all required the use of artificial intelligence (AI) methods as the epidemic grew in scope. To combat COVID-19, screening procedures that are both effective and rapid are required. At COVID-19, AI developers took a chance to show how AI can benefit all mankind. It was only after the employment of AI in the battle against COVID-19. AI's various and diverse applications in the epidemic are documented in this study. It is the purpose of this study to help shape the future development and usage of these technologies, whether in the present or future health crises.
2D face recognition using PCA and triplet similarity embedding Bazatbekov, Bek; Turan, Cemil; Kadyrov, Shirali; Aitimov, Askhat
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4162

Abstract

The aim of this study is to propose a new robust face recognition algorithm by combining principal component analysis (PCA), Triplet Similarity Embedding based technique and Projection as a similarity metric at the different stages of the recognition processes. The main idea is to use PCA for feature extraction and dimensionality reduction, then train the triplet similarity embedding to accommodate changes in the facial poses, and finally use orthogonal projection as a similarity metric for classification. We use the open source ORL dataset to conduct the experiments to find the recognition rates of the proposed algorithm and compare them to the performance of one of the very well-known machine learning algorithms k-Nearest Neighbor classifier. Our experimental results show that the proposed model outperforms the kNN. Moreover, when the training set is smaller than the test set, the performance contribution of triplet similarity embedding during the learning phase becomes more visible compared to without it

Filter by Year

2023 2023


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 6: December 2024 Vol 13, No 5: October 2024 Vol 13, No 4: August 2024 Vol 13, No 3: June 2024 Vol 13, No 2: April 2024 Vol 13, No 1: February 2024 Vol 12, No 6: December 2023 Vol 12, No 5: October 2023 Vol 12, No 4: August 2023 Vol 12, No 3: June 2023 Vol 12, No 2: April 2023 Vol 12, No 1: February 2023 Vol 11, No 6: December 2022 Vol 11, No 5: October 2022 Vol 11, No 4: August 2022 Vol 11, No 3: June 2022 Vol 11, No 2: April 2022 Vol 11, No 1: February 2022 Vol 10, No 6: December 2021 Vol 10, No 5: October 2021 Vol 10, No 4: August 2021 Vol 10, No 3: June 2021 Vol 10, No 2: April 2021 Vol 10, No 1: February 2021 Vol 9, No 6: December 2020 Vol 9, No 5: October 2020 Vol 9, No 4: August 2020 Vol 9, No 3: June 2020 Vol 9, No 2: April 2020 Vol 9, No 1: February 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 List of Accepted Papers (with minor revisions) More Issue