cover
Contact Name
Rahmadya Trias Handayanto
Contact Email
rahmadya.trias@gmail.com
Phone
-
Journal Mail Official
piksel.unisma@gmail.com
Editorial Address
rogram Studi Teknik Komputer Fakultas Teknik Universitas Islam 45 Jl. Cut Meutia No. 83 Bekasi 17113
Location
Kota bekasi,
Jawa barat
INDONESIA
PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
ISSN : 23033304     EISSN : 26203553     DOI : https://doi.org/10.33558/piksel
Core Subject : Science,
Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami perubahan masa terbit yaitu setiap bulan Maret dan September namun tetap open access tanpa biaya publikasi. p-ISSN: 2303-3304, e-ISSN: 2620-3553. Available Online Since 2018.
Articles 1 Documents
Search results for , issue "Vol. 1 No. 2 (2013): September 2013" : 1 Documents clear
KLASIFIKASI DINAMIS DENGAN MODIFIKASI ALGORITMA FUZZY C-MEANS (FCM) Herlawati, Herlawati; Handayanto, Rahmadya Trias
PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic Vol. 1 No. 2 (2013): September 2013
Publisher : LPPM Universitas Islam 45 Bekasi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRACTAside forecasting, classification is an important process in the data mining field. Nowdays, theclassification usually use soft computing algorithms, such as Fuzzy Inference System (FIS), NeuralNetworks (NNs), and Genetic Algorithms (GAs). Different from K-Means, the fuzzy-based classification issometimes is said soft clustering. Some dynamic method has been research using K-Means for obtaining theoptimal number of cluster. This paper try to implement this method for FCM algoritms because thisalgorithms run better than K-Means. Similar to Dynamic Clustering using K-Means, for FCM everyelements of cluster are counted the distance from the center. Key Workds : Fuzzy C-Means Clustering (FCM), Cluster Quality, Dynamic Classification ABSTRAKSelain peramalan, klasifikasi merupakan salah satu proses penting dalam bidang data mining. Saat iniklasifikasi banyak dilakukan dengan algoritma-algoritma yang berbasis soft computing seperti fuzzy,jaringan syaraf tiruan (JST) ataupun algoritma genetik. Berbeda dengan K-Means, klasifikasi berbasis fuzzyyang sering disebut fuzzy C-Means (FCM) merupakan klasifikasi halus (soft clustering). Beberapa metodedinamis dengan memodifikasi algoritma K-Means telah banyak dilakukan dan terbukti memiliki hasil yangoptimal. Tulisan ini bermaksud menerapkan metode dinamis itu pada algoritma FCM mengingat FCMmemiliki keunggulan tertentu dibanding K-Means. Seperti pada K-Means, klasifikasi dinamis pada FCMmenunjukkan perbaikan pada nilai intra dan inter dimana nilai-nilai tersebut menunjukkan kedekatan antarelemen tiap kluster dan seberapa jauh jarak pisah antar pusat-pusat kluster. Kata Kunci : Fuzzy C-Means Clustering (FCM), Kualitas Kluster, Klasifikasi Dinamis

Page 1 of 1 | Total Record : 1