cover
Contact Name
Ivan Ferdian
Contact Email
ivan.ijgbg@gmail.com
Phone
-
Journal Mail Official
ivan.ijgbg@gmail.com
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
IJOG : Indonesian Journal on Geoscience
ISSN : 23559314     EISSN : 23559306     DOI : -
Core Subject : Science,
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher.
Arjuna Subject : -
Articles 10 Documents
Search results for , issue "Vol 6, No 1 (2011)" : 10 Documents clear
Focal Mechanism and Parameter of Volcano-Tectonic Earthquake Source, in Mount Guntur, West Java Hidayati, Sri; Suparman, Y.; Loeqman, A.
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2123.629 KB) | DOI: 10.17014/ijog.v6i1.111

Abstract

DOI: 10.17014/ijog.v6i1.111Guntur Volcano in West Java is one of the most active volcanoes in Indonesia. The last eruption took place in 1847 and the volcanic activity has been dormant since then, however its seismicity is active. During the period of July to October 2009, the hypocenter distribution of VT earthquakes is mostly located at western flank of the volcano, beneath Guntur - Gandapura craters at the depth of less than 5 km. The depth pattern shows deeper to the northwest. The VT earthquakes deeper than 5 km were not found in this period. The focal mechanism of VT earthquakes are oblique normal fault, strike-slip fault and oblique reverse fault types. The mechanism of those earthquakes is not uniquely determined probably due to complicated structures at Guntur volcano complex area, which is aligned in NW-SE direction. T-axis of the oblique normal fault is trending in northwest - southeast direction similar to the structures found in the summit area of Gunung Guntur Volcano. Similarly, one of the strike-slip fault nodal line and P-axis of oblique reverse fault are also trending in northwest - southeast. Ploting of the earthquake source parameters (seismic moment, corner frequency, and stress drop) made to hypocenter distance shows no significant difference on those parameters between earthquakes at close and far distances to Kabuyutan station. It is probably due to the hypocenters are not concentrated in one zone. Meanwhile, the relationship between seismic moment (Mo) and seismic source radius (r) shows that for earthquakes with moment of smaller than 1018 dyne cm, the radius of the hypocenter is constant which is namely 60 m.
Turbidite Facies of the Halang Formation in Ajibarang Area, Central Java Praptisih, Praptisih; Kamtono, Kamtono
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2265.866 KB) | DOI: 10.17014/ijog.v6i1.112

Abstract

DOI: 10.17014/ijog.v6i1.112An understanding of deepwater turbidite sediments is very important mainly dealing with the determination of a reservoir geometry. The problem arising in the turbidite sediment geometry is very complex and varied, and its existence depends on how, when, and type of its environment. In Central Java, the broad turbidite sediment distribution of the Halang Formation is needed to be observed its facies association. This paper will discuss the turbidite facies of Halang Formation in the Ajibarang area. The method used to analyze the turbidite facies is by measuring stratigraphic sections and observing the lithofacies characteristics to reconstruct its depositional environment. The Halang Formation outcrop in the Ajibarang area is dominantly composed of alternating sandstone and claystone or marl. Based on the observation, the turbidite facies of Halang Formation, in the Ajibarang area, was deposited on a submarine fan system at the middle fan of suprafan lobes. Compiling with the previous studies, the source of the Halang Formation is indicated to be derived from the south southwest.
Sediment Distribution related to Gold and Silver Placer Deposits in Offshore of Sambas Besar Estuary, Sambas Regency, West Kalimantan Usman, Ediar; Lugra, I. W.
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1601.086 KB) | DOI: 10.17014/ijog.v6i1.113

Abstract

DOI: 10.17014/ijog.v6i1.113Result of grain size analysis of the sea floor sediments from the study area indicates four sediment types, those are silt, sandy silt, silty sand, and sand. The silt unit has the widest distribution that is around 127.2 km2, sandy silt 12.65 km2, sand 1.176 km2, and silty sand 0.44 km2. Result of gold and silver content analysis from some selected samples indicates that the highest gold and silver amount are at PMK-08 location in northern part of the study area with gold content of 0.21 ppm and silver 13.36 ppm; both are silt sediment types. The highest gold and silver content occur within medium - coarse sediments containing subrounded grains of quartz and pyrite, at northern part of the study area. The presence of silver and gold is suggested to be controlled by a north-south longshore current pattern. The source of sediments from Sambas Besar River follows the longshore current, e.g. in northern estuary from south to north, and at southern estuary from north to south direction.
Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi Idrus, Arifudin; Nur, I.; Warmada, I. W.; Fadlin, Fadlin
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2637.886 KB) | DOI: 10.17014/ijog.v6i1.114

Abstract

DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana) secondary placer gold. A field study indicates that the Langkowala (Bombana) placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.
Nannoplankton Assemblage Succession Throughout Cretaceous/ Tertiary Boundary in the “P” Well Section, Santos Basin, Brazil Panuju, Panuju
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1087.871 KB) | DOI: 10.17014/ijog.v6i1.115

Abstract

DOI: 10.17014/ijog.v6i1.115The massive change in calcareous nannoplankton assemblages throughout Cretaceous/Tertiary (K/T) boundary (65.5 M.a.) has been illustrated by several authors. The diverse and abundant assemblage disappears suddenly above the Cretaceous/Tertiary boundary. This event is related to the most dramatic environmental changes in the Earths history due to the catastrophic events, those are meteorite impact (Chicxulub) and supervolcano eruption (Deccan) occurring at the end of Cretaceous. The succeeding age was a time of rapid evolution of nannoplankton during Paleocene. A quantitative method analysis of nannoplankton throughout Maastrichtian to Paleocene of “P” well section, Santos Basin, Brazil, indicated that the nannoplankton assemblages abruptly decrease in diversity and abundance and mostly change in species composition. The various complex shapes of species at Maastrichtian also underwent changing to simple plain shapes and small at Paleocene. The sedimentary section ranges from the top of zone CC23 (Coccolith Cretaceous 23) to NP9 (Nannoplankton Paleogen 9). It is bounded by the Last Occurrence (LO) of Tranolithus pachelosus at the base and Fasciculithus tympaniformis at the top. The biostratigraphic discontinuity characterized by the absence of zone CC26 to NP4 is an indicator for the presence of an unconformity at K/T boundary within analyzed section. The Cretaceous nannoplankton assemblages are dominated by Genera Watznaueria, Micula, Arkhangelskiella, Cribrosphaerella, Eiffellithus, Predicosphaera, and Retecapsa, whilst the Paleocene assemblages are dominated by Genera Toweius, Ericsonia, and Coccolithus. Survivor Cretaceous species recovered into Tertiary sediments consist of Braarudosphaera bigelowii, Biscutum melaniae, Neocrepidolithus neocrassus, Placozygus sigmoides, Cyclagelosaphaera reinhardtii, Markalius inversus, and Scapolithus fossilis.
Focal Mechanism and Parameter of Volcano-Tectonic Earthquake Source, in Mount Guntur, West Java Sri Hidayati; Y. Suparman; A. Loeqman
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2123.629 KB) | DOI: 10.17014/ijog.6.1.1-11

Abstract

DOI: 10.17014/ijog.v6i1.111Guntur Volcano in West Java is one of the most active volcanoes in Indonesia. The last eruption took place in 1847 and the volcanic activity has been dormant since then, however its seismicity is active. During the period of July to October 2009, the hypocenter distribution of VT earthquakes is mostly located at western flank of the volcano, beneath Guntur - Gandapura craters at the depth of less than 5 km. The depth pattern shows deeper to the northwest. The VT earthquakes deeper than 5 km were not found in this period. The focal mechanism of VT earthquakes are oblique normal fault, strike-slip fault and oblique reverse fault types. The mechanism of those earthquakes is not uniquely determined probably due to complicated structures at Guntur volcano complex area, which is aligned in NW-SE direction. T-axis of the oblique normal fault is trending in northwest - southeast direction similar to the structures found in the summit area of Gunung Guntur Volcano. Similarly, one of the strike-slip fault nodal line and P-axis of oblique reverse fault are also trending in northwest - southeast. Ploting of the earthquake source parameters (seismic moment, corner frequency, and stress drop) made to hypocenter distance shows no significant difference on those parameters between earthquakes at close and far distances to Kabuyutan station. It is probably due to the hypocenters are not concentrated in one zone. Meanwhile, the relationship between seismic moment (Mo) and seismic source radius (r) shows that for earthquakes with moment of smaller than 1018 dyne cm, the radius of the hypocenter is constant which is namely 60 m.
Turbidite Facies of the Halang Formation in Ajibarang Area, Central Java Praptisih Praptisih; Kamtono Kamtono
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2265.866 KB) | DOI: 10.17014/ijog.6.1.13-27

Abstract

DOI: 10.17014/ijog.v6i1.112An understanding of deepwater turbidite sediments is very important mainly dealing with the determination of a reservoir geometry. The problem arising in the turbidite sediment geometry is very complex and varied, and its existence depends on how, when, and type of its environment. In Central Java, the broad turbidite sediment distribution of the Halang Formation is needed to be observed its facies association. This paper will discuss the turbidite facies of Halang Formation in the Ajibarang area. The method used to analyze the turbidite facies is by measuring stratigraphic sections and observing the lithofacies characteristics to reconstruct its depositional environment. The Halang Formation outcrop in the Ajibarang area is dominantly composed of alternating sandstone and claystone or marl. Based on the observation, the turbidite facies of Halang Formation, in the Ajibarang area, was deposited on a submarine fan system at the middle fan of suprafan lobes. Compiling with the previous studies, the source of the Halang Formation is indicated to be derived from the south southwest.
Sediment Distribution related to Gold and Silver Placer Deposits in Offshore of Sambas Besar Estuary, Sambas Regency, West Kalimantan Ediar Usman; I. W. Lugra
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1601.086 KB) | DOI: 10.17014/ijog.6.1.29-42

Abstract

DOI: 10.17014/ijog.v6i1.113Result of grain size analysis of the sea floor sediments from the study area indicates four sediment types, those are silt, sandy silt, silty sand, and sand. The silt unit has the widest distribution that is around 127.2 km2, sandy silt 12.65 km2, sand 1.176 km2, and silty sand 0.44 km2. Result of gold and silver content analysis from some selected samples indicates that the highest gold and silver amount are at PMK-08 location in northern part of the study area with gold content of 0.21 ppm and silver 13.36 ppm; both are silt sediment types. The highest gold and silver content occur within medium - coarse sediments containing subrounded grains of quartz and pyrite, at northern part of the study area. The presence of silver and gold is suggested to be controlled by a north-south longshore current pattern. The source of sediments from Sambas Besar River follows the longshore current, e.g. in northern estuary from south to north, and at southern estuary from north to south direction.
Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi Arifudin Idrus; I. Nur; I. W. Warmada; Fadlin Fadlin
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2637.886 KB) | DOI: 10.17014/ijog.6.1.43-49

Abstract

DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana) secondary placer gold. A field study indicates that the Langkowala (Bombana) placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.
Nannoplankton Assemblage Succession Throughout Cretaceous/ Tertiary Boundary in the “P” Well Section, Santos Basin, Brazil Panuju Panuju
Indonesian Journal on Geoscience Vol 6, No 1 (2011)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1087.871 KB) | DOI: 10.17014/ijog.6.1.51-68

Abstract

DOI: 10.17014/ijog.v6i1.115The massive change in calcareous nannoplankton assemblages throughout Cretaceous/Tertiary (K/T) boundary (65.5 M.a.) has been illustrated by several authors. The diverse and abundant assemblage disappears suddenly above the Cretaceous/Tertiary boundary. This event is related to the most dramatic environmental changes in the Earth's history due to the catastrophic events, those are meteorite impact (Chicxulub) and supervolcano eruption (Deccan) occurring at the end of Cretaceous. The succeeding age was a time of rapid evolution of nannoplankton during Paleocene. A quantitative method analysis of nannoplankton throughout Maastrichtian to Paleocene of “P” well section, Santos Basin, Brazil, indicated that the nannoplankton assemblages abruptly decrease in diversity and abundance and mostly change in species composition. The various complex shapes of species at Maastrichtian also underwent changing to simple plain shapes and small at Paleocene. The sedimentary section ranges from the top of zone CC23 (Coccolith Cretaceous 23) to NP9 (Nannoplankton Paleogen 9). It is bounded by the Last Occurrence (LO) of Tranolithus pachelosus at the base and Fasciculithus tympaniformis at the top. The biostratigraphic discontinuity characterized by the absence of zone CC26 to NP4 is an indicator for the presence of an unconformity at K/T boundary within analyzed section. The Cretaceous nannoplankton assemblages are dominated by Genera Watznaueria, Micula, Arkhangelskiella, Cribrosphaerella, Eiffellithus, Predicosphaera, and Retecapsa, whilst the Paleocene assemblages are dominated by Genera Toweius, Ericsonia, and Coccolithus. Survivor Cretaceous species recovered into Tertiary sediments consist of Braarudosphaera bigelowii, Biscutum melaniae, Neocrepidolithus neocrassus, Placozygus sigmoides, Cyclagelosaphaera reinhardtii, Markalius inversus, and Scapolithus fossilis.

Page 1 of 1 | Total Record : 10


Filter by Year

2011 2011


Filter By Issues
All Issue Vol. 12 No. 3 (2025) Vol. 12 No. 2 (2025) Vol. 12 No. 1 (2025) Vol. 11 No. 3 (2024) Vol. 11 No. 2 (2024) Vol. 11 No. 1 (2024) Vol. 10 No. 3 (2023) Vol. 10 No. 2 (2023) Vol 10, No 2 (2023): in-press Vol. 10 No. 1 (2023) Vol 10, No 1 (2023) Vol 9, No 3 (2022) Vol. 9 No. 3 (2022) Vol 9, No 2 (2022) Vol. 9 No. 2 (2022) Vol. 9 No. 1 (2022) Vol 9, No 1 (2022) Vol 8, No 3 (2021) Vol. 8 No. 3 (2021) Vol 8, No 2 (2021) Vol. 8 No. 2 (2021) Vol. 8 No. 1 (2021) Vol 8, No 1 (2021) Vol 7, No 3 (2020) Vol 7, No 2 (2020) Vol 7, No 1 (2020) Vol 6, No 3 (2019) Vol 6, No 3 (2019): in-press Vol 6, No 2 (2019) Vol 6, No 2 (2019) Vol 6, No 1 (2019) Vol 6, No 1 (2019) Vol 5, No 3 (2018) Vol 5, No 3 (2018) Vol 5, No 2 (2018) Vol 5, No 2 (2018) Vol 5, No 1 (2018) Vol 5, No 1 (2018) Vol. 5 No. 1 (2018) Vol 4, No 3 (2017) Vol 4, No 3 (2017) Vol 4, No 2 (2017) Vol 4, No 2 (2017) Vol 4, No 1 (2017) Vol 4, No 1 (2017) Vol 3, No 3 (2016) Vol 3, No 3 (2016) Vol 3, No 2 (2016) Vol 3, No 2 (2016) Vol 3, No 1 (2016) Vol 3, No 1 (2016): in-press Vol 2, No 3 (2015) Vol 2, No 3 (2015) Vol 2, No 2 (2015) Vol 2, No 2 (2015) Vol 2, No 1 (2015) Vol 2, No 1 (2015) Vol 1, No 3 (2014) Vol 1, No 3 (2014) Vol 1, No 2 (2014) Vol 1, No 2 (2014) Vol 1, No 1 (2014) Vol 1, No 1 (2014) Vol 8, No 4 (2013) Vol 8, No 4 (2013) Vol 8, No 3 (2013) Vol 8, No 3 (2013) Vol 8, No 2 (2013) Vol 8, No 2 (2013) Vol 8, No 1 (2013) Vol 8, No 1 (2013) Vol 7, No 4 (2012) Vol 7, No 4 (2012) Vol 7, No 3 (2012) Vol 7, No 3 (2012) Vol 7, No 2 (2012) Vol 7, No 2 (2012) Vol 7, No 1 (2012) Vol 7, No 1 (2012) Vol 6, No 4 (2011) Vol 6, No 4 (2011) Vol 6, No 3 (2011) Vol 6, No 3 (2011) Vol 6, No 2 (2011) Vol 6, No 2 (2011) Vol 6, No 1 (2011) Vol 6, No 1 (2011) Vol 5, No 4 (2010) Vol 5, No 4 (2010) Vol 5, No 3 (2010) Vol 5, No 3 (2010) Vol 5, No 2 (2010) Vol 5, No 2 (2010) Vol 5, No 1 (2010) Vol 5, No 1 (2010) Vol 4, No 4 (2009) Vol 4, No 4 (2009) Vol 4, No 3 (2009) Vol 4, No 3 (2009) Vol 4, No 2 (2009) Vol 4, No 2 (2009) Vol 4, No 1 (2009) Vol 4, No 1 (2009) Vol 3, No 4 (2008) Vol 3, No 4 (2008) Vol 3, No 3 (2008) Vol 3, No 3 (2008) Vol 3, No 2 (2008) Vol 3, No 2 (2008) Vol 3, No 1 (2008) Vol 3, No 1 (2008) Vol 2, No 4 (2007) Vol 2, No 4 (2007) Vol 2, No 3 (2007) Vol 2, No 3 (2007) Vol 2, No 2 (2007) Vol 2, No 2 (2007) Vol 2, No 1 (2007) Vol 2, No 1 (2007) Vol 1, No 4 (2006) Vol 1, No 4 (2006) Vol 1, No 3 (2006) Vol 1, No 3 (2006) Vol 1, No 2 (2006) Vol 1, No 2 (2006) Vol 1, No 1 (2006) Vol 1, No 1 (2006) More Issue