cover
Contact Name
Agung Nugroho
Contact Email
jmfs@lppm.itb.ac.id
Phone
+6222-86010051
Journal Mail Official
jmfs@lppm.itb.ac.id
Editorial Address
ITB Journal Publisher, LPPM ITB, Center for Research and Community Services (CRCS) Building 6th & 7th Floor , Jl. Ganesha No. 10 Bandung 40132, Indonesia
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of Mathematical and Fundamental Sciences
ISSN : 23375760     EISSN : 23385510     DOI : https://doi.org/10.5614/j.math.fund.sci.
Core Subject : Science, Education,
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health, Medical, Pharmacy), Mathematics, Physics, and Statistics.
Articles 4 Documents
Search results for , issue "Vol. 3 No. 3 (1965)" : 4 Documents clear
Metode untuk Menghitung Gangguan Kilat oada Kawat Transmisi Tegangan Tinggi T.S. Hutauruk
Journal of Mathematical and Fundamental Sciences Vol. 3 No. 3 (1965)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ichtisar. Metode AIEE1 jang lebih dari sepuluh tahun terachir ini dipakai untuk menghitung gangguan kilat pada kawat transmisi, ternjata tidak dapat lagi dipakai untuk kawat transmisi tegangan tinggi (150 Kv atau lebih). Metode ini memberikan hasil jang terlampau rendah. Metode2 jang lain (Teori Gelombang Berdjalan2, Teori Medan3,4 dan Metode Computer Monte Carlo5) telah ditjoba dan memberikan hasil jang lebih memuaskan. Berdasarkan teori2 jang disebut diatas penulis mentjoba menguraikan satu metode analitis jang dapat dipergunakan untuk computer atau dengan pertolongan mistar hitung.Abstract. AIEE method for calculating the lightning outages of transmission lines has been accepted and applied for more than a decade. It is realized that for extra high voltages (150Kv and higher) this method can no longer be applied. It gives too low values compared to observations. Some other methods (Traveling Wave Theory, Field Theory and Monte Carlo Computer Method) have been tried and give more satisfactorily results. Based on the theories mentioned  above the writer tries to outline an analytical method that can be applied to either computer or  by mean of  slide rules.
The Colour Magnitude Diagram of The Galactic Cluster NGC 6383 Pik Sin The
Journal of Mathematical and Fundamental Sciences Vol. 3 No. 3 (1965)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. Almost all the stars in a circular area with  a radius of  about 12 min. of arc, were measured photometrically down to V="13".80 mag., using plates obtained with the Uppsala Schmidt telescope Mt. Stromlo and the Schmidt telescope  at Lembang. The photographic measurement generally confirm  Enggen's remarkable result that NGC 6383 is a very young cluster, similar to NGC 2264. Groups stars lying on different parts of the colour magnitude diagram  NGC 6383, are discussed in connection with Herbig's idea about non-coevalness of stars in stellar cluster. Ichtisar. Hampir semua bintang dalam sebuah daerah bundar dengan djari2 kira2 12 menit busur, telah diukur setjara photometris sampai V = 13.80 magn., dengan menggunakan katja2 potret jang didapatkan dengan teropong Schmidt Uppsala di Observatorium Mt. Stromlo dan teropong Schmidt di Lembang. Kumpulan2 bintang jang terletak pada tempat2 jang berbeda-beda pada diagram warna magnitudo daripada NGC 6383 telah dibahas sehubungan dengan idee Herbig mengenai tidak dilahirkannja bintang2 dalam sebuah gugus bintang pada saat bersamaan.
Diagram Vektor Arus dan Tegangan Saluran Transmisi Margunadi Margunadi
Journal of Mathematical and Fundamental Sciences Vol. 3 No. 3 (1965)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ichtisar. Untuk saluran2 transmisi pendek untuk membuat suatu diagram vector jang menjatakan hubungan antara tegangan dan arus daripada udjung awal dan udjung achir, adalah suatu hal jang sederhana. Untuk saluran listrik jang pandjang prosedur ini adalah rumit, karena adanja kapasitansi2 shunt jang didistribusikan. Akan tetapi dengan merubah persamaan2 untuk saluran pandjang, hal ini dapat dilakukan dengan tjara relatif praktis. Untuk maksud itu, bagi tiap besaran dipakailah harga2 per unit berdasarkan tegangan pada udjung achir dan arus beban karakteristik. Suatu lingkaran, sebagai locus daripada tegangan awal sesuai dengan factor daja = 1, djuga diturunkan dari uraian itu. Abstract. For short transmission lines it is a simple matter to construct a vector diagram showing the phase relationships between the sending-end and receiving-end voltages and currents. For an electrically long line the procedure is complicated because of the presence  of the distributes shunt capacitances. By transforming the equations of a long line, however, it is possible to accomplish this in a relatively practical way. For that purpose per unit  quantities are used  with the receiving-end voltage and the surge-impedance-load current taken as basis. A circle as locus of sending-end voltage corresponding to unity sending "“end power factor  is also derived from the consideration.
Geometric Properties of Landscapes H.D. Tjia
Journal of Mathematical and Fundamental Sciences Vol. 3 No. 3 (1965)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. Quantification of landforms has been executed for most watershed elements and adjacent slopes and some concerning mountains and distribution pattern of land and water. Almost all watershed characteristic are based on the system of stream ordering. Empirically certain statistical relations of landscape elements have been proven to exist beyond doubt like  the laws of stream numbers, stream lengths, stream slopes, drainage basin areas, contributing areas; also: constant of channel maintenance; drainage density and texture ratio; relief ratio; hypsometric integrals for drainage basins and mountains; frequency distribution of stream lengths; maximum valley side slopes. Furthermore, interesting results may be expected from the concepts of geometrical similarity of drainage basins and the distribution pattern of land and water. The good to excellent quality of Indonesian topographic maps invite an immediate investigation of drainage density and texture ratio; hypsometric integral, maximum valley side slopes, and relief ratio in order to obtain quantitative proofs in distinguishing landforms as products of humid tropics from those of the temperate humid/dry climates. Ichtisar. Sifat-sifat geometri dari bengtangalam telah diukur setjara kwantitas, seperti untuk kebanjakan unsur-unsur daerah aliran dan beberapa mengenai gunung dan penjebaran dari daratan dan air. Hampir semua sifat daerah aliran didasarkan atas suatu sistim tata-atur aliran (stream ordering). Dalam praktek telah dapat dipastikan beberapa hubungan antara unsur-unsur bentangalam masing-masing, seperti hokum-hukum djumlah sungai, pandjang sungai, terdjun sungai, luas daerah aliran, 'contributing areas'; 'constant of channel maintenance'; 'drainage density and texture ratio'; 'relief ration'; 'hypsometric integral' untuk daerah aliran dan untuk gunung; 'frequency distribution' dari pandjang sungai; maksimum dari lereng lembah. Selandjutnya masih dapat diharapkan hasil-hasil jang menarik dari konsepsi 'geometrical similarity' dari daerah aliran serta dari teori pola penjebaran daratan dan air. Peta-peta topografi Indonesia jang ketelitiannja sangat baik sudah memungkinkan penjelidikan geomorfologi kwantitatif disini. Sebagai permulaan penjelidikan mengenai 'drainage density and texture ratio', hypsometric integral', lereng lembah maksimum dan 'relief ratio' dapat dilakukan guna memperoleh angka-angka untuk membeda-bedakan bentangalam sebagai hasil dari iklim tropika lembab dan jang dibentuk oleh iklim sedang lembab kering.

Page 1 of 1 | Total Record : 4


Filter by Year

1965 1965


Filter By Issues
All Issue Vol. 56 No. 3 (2024) Vol. 56 No. 1 (2024): (In Progress) Vol. 55 No. 3 (2024) Vol. 55 No. 2 (2023) Vol. 55 No. 1 (2023) Vol. 54 No. 3 (2023) Vol. 54 No. 2 (2022) Vol. 54 No. 1 (2022) Vol. 53 No. 3 (2021) Vol. 53 No. 2 (2021) Vol. 53 No. 1 (2021) Vol. 52 No. 3 (2020) Vol. 52 No. 2 (2020) Vol. 52 No. 1 (2020) Vol. 51 No. 3 (2019) Vol. 51 No. 2 (2019) Vol. 51 No. 1 (2019) Vol. 50 No. 3 (2018) Vol. 50 No. 2 (2018) Vol. 50 No. 1 (2018) Vol. 49 No. 3 (2017) Vol. 49 No. 2 (2017) Vol. 49 No. 1 (2017) Vol. 48 No. 3 (2016) Vol. 48 No. 2 (2016) Vol. 48 No. 1 (2016) Vol. 47 No. 3 (2015) Vol. 47 No. 2 (2015) Vol. 47 No. 1 (2015) Vol. 46 No. 3 (2014) Vol. 46 No. 2 (2014) Vol. 46 No. 1 (2014) Vol. 45 No. 3 (2013) Vol. 45 No. 2 (2013) Vol. 45 No. 1 (2013) Vol. 44 No. 3 (2012) Vol. 44 No. 2 (2012) Vol. 44 No. 1 (2012) Vol. 43 No. 3 (2011) Vol. 43 No. 2 (2011) Vol. 43 No. 1 (2011) Vol. 42 No. 2 (2010) Vol. 42 No. 1 (2010) Vol. 41 No. 2 (2009) Vol. 41 No. 1 (2009) Vol. 40 No. 2 (2008) Vol. 40 No. 1 (2008) Vol. 39 No. 1-2 (2007) Vol. 38 No. 2 (2006) Vol. 38 No. 1 (2006) Vol. 37 No. 2 (2005) Vol. 37 No. 1 (2005) Vol. 36 No. 2 (2004) Vol. 36 No. 1 (2004) Vol. 35 No. 2 (2003) Vol. 35 No. 1 (2003) Vol. 34 No. 2&3 (2002) Vol. 33 No. 3 (2001) Vol. 33 No. 2 (2001) Vol. 33 No. 1 (2001) Vol. 32 No. 2 (2000) Vol. 32 No. 1 (2000) Vol. 31 No. 3 (1999) Vol. 31 No. 2 (1999) Vol. 31 No. 1 (1999) Vol. 30 No. 3 (1998) Vol. 30 No. 2 (1998) Vol. 30 No. 1 (1998) Vol. 29 No. 1/2 (1996) Vol. 27 No. 3 (1994) Vol. 27 No. 2 (1994) Vol. 25 No. 2/3 (1992) Vol. 25 No. 1 (1992) Vol. 24 No. 2/3 (1991) Vol. 24 No. 1 (1991) Vol. 23 No. 1 (1990) Vol. 22 No. 1/2/3 (1989) Vol. 21 No. 2/3 (1988) Vol. 21 No. 1 (1988) Vol. 20 No. 1/2 (1987) Vol. 20 No. 3 (1987) Vol. 19 No. 2/3 (1986) Vol. 19 No. 1 (1986) Vol. 18 No. 2/3 (1985) Vol. 18 No. 1 (1985) Vol. 17 No. 3 (1984) Vol. 17 No. 2 (1984) Vol. 17 No. 1 (1984) Vol. 16 No. 3 (1983) Vol. 16 No. 2 (1983) Vol. 16 No. 1 (1983) Vol. 15 No. 3 (1982) Vol. 15 No. 2 (1982) Vol. 15 No. 1 (1982) Vol. 14 No. 1/2 (1981) Vol. 14 No. 3 (1981) Vol. 13 No. 1/2 (1980) Vol. 13 No. 3 (1980) Vol. 12 No. 3 (1979) Vol. 12 No. 2 (1979) Vol. 12 No. 1 (1979) Vol. 11 No. 3 (1978) Vol. 11 No. 2 (1977) Vol. 11 No. 1 (1976) Vol. 10 No. 3 (1976) Vol. 10 No. 2 (1975) Vol. 10 No. 1 (1975) Vol. 9 No. 3 (1975) Vol. 9 No. 2 (1975) Vol. 9 No. 1 (1974) Vol. 8 No. 3 (1974) Vol. 8 No. 2 (1974) Vol. 8 No. 1 (1974) Vol. 7 No. 4 (1974) Vol. 7 No. 3 (1973) Vol. 7 No. 2 (1973) Vol. 7 No. 1 (1973) Vol. 6 No. 4 (1972) Vol. 6 No. 3 (1972) Vol. 6 No. 2 (1971) Vol. 6 No. 1 (1971) Vol. 5 No. 1 (1970) Vol. 4 No. 4 (1970) Vol. 4 No. 3 (1969) Vol. 4 No. 2 (1968) Vol. 4 No. 1 (1967) Vol. 3 No. 4 (1965) Vol. 3 No. 3 (1965) Vol. 3 No. 2 (1964) Vol. 3 No. 1 (1964) Vol. 2 No. 4 (1963) Vol. 2 No. 3 (1963) Vol. 2 No. 2 (1962) Vol. 2 No. 1 (1962) Vol. 1 No. 4 (1961) Vol. 1 No. 3 (1961) Vol. 1 No. 2 (1961) Vol. 1 No. 1 (1961) More Issue