cover
Contact Name
Agung Nugroho
Contact Email
jmfs@lppm.itb.ac.id
Phone
+6222-86010051
Journal Mail Official
jmfs@lppm.itb.ac.id
Editorial Address
ITB Journal Publisher, LPPM ITB, Center for Research and Community Services (CRCS) Building 6th & 7th Floor , Jl. Ganesha No. 10 Bandung 40132, Indonesia
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of Mathematical and Fundamental Sciences
ISSN : 23375760     EISSN : 23385510     DOI : https://doi.org/10.5614/j.math.fund.sci.
Core Subject : Science, Education,
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health, Medical, Pharmacy), Mathematics, Physics, and Statistics.
Articles 9 Documents
Search results for , issue "Vol. 45 No. 1 (2013)" : 9 Documents clear
Auslander Reiten Quiver of Nakayama Algebra type Dynkin Graph An Faisal Anwar; I. Irawati; Intan Muchtadi-Alamsyah
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.1

Abstract

In this paper we will determine Auslander Reiten quiver of Nakayama algebra with quiver type Dynkin graph An for all natural number n ≥ 2. The AR-quiver is a visualization of module category of finite dimensional algebras. From the AR-quiver of an algebra A we may know all the isomorphism classes of indecomposable modules in mod A and the homomorphism between them. Once we get the general shape of the AR-quiver of this algebra, we will use it to compute a tilting module of this algebra.
Seismic Velocity Structures beneath the Guntur Volcano Complex, West Java, Derived from Simultaneous Tomographic Inversion and Hypocenter Relocation Andri Dian Nugraha; Sri Widiyantoro; Awan Gunawan; Gede Suantika
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.2

Abstract

We conducted travel time tomographic inversion to image seismic velocity structures (Vp, Vs, and Vp/Vs ratio) with simultaneous hypocenter adjustment beneath the Guntur volcano complex that is located in the Garut district, West Java province, Indonesia. The Guntur volcano is one of the active volcanoes in Indonesia, although large eruptions have not occurred for about 160 years. We used volcanic and tectonic earthquakes catalog data from seismic stations deployed by Centre for Volcanology and Geological Hazard Mitigation (CVGHM). For the tomographic inversion procedure, we set grid nodes with a horizontal spacing of 2 x 2 km2 and an average vertical spacing of 2 km. Our results show low Vp, low Vs, and high Vp/Vs ratio regions beneath the Guntur crater and the Gandapura caldera at depths of 6-8 km and 7-9 km, respectively. These features can be associated with amelt-filled pore rock structure. However, a low Vp/Vs ratio and low velocities are exhibited beneath the Kamojang caldera at depths of 2-6 km that may be associated with rock with H2O-filled pores with a high aspect ratio.
Determining Velocity and Q-factor Structure using Crosshole Tomography F. Fatkhan; Andri Dian Nugraha; Ahmad Syahputra
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.3

Abstract

In this study, we have conducted a crosshole tomography survey to obtain seismic data from two boreholes on the ITB campus. The first borehole was 39 meters deep while the second was 19 meters deep. The aim of the study was to determine the subsurface velocity and Q-factor for the region between the two boreholes for geotechnical purposes. Sources of seismic waves were produced by an impulse generator and sparker and were recorded by 12 channels of borehole hydrophones. In the tomography inversion, the pseudo-bending ray tracing method was employed to calculate travel times. The initial velocity model was a 1-D model with 1x1 m2 block dimensions. The non-linear inversion problem was solved by delay-time tomography with the LSQR method. Also, a checkerboard resolution test (CRT) was conducted to evaluate the resolution of the tomography inversion. Using the velocity structure results, a LSQR Q-tomography inversion was carried out using spectral curve fitting to obtain the attenuation structure (t* values). The resulting tomogram shows that there are 3 layers, with an unconsolidated layer (down to 8 meters), a consolidated layer (from 8 meters deep to 20 meters), and bedrock (more than 20 meters). From the results, the ground water level is estimated at a depth of 14 meters.
Behavior for Time Invariant Finite Dimensional Discrete Linear Systems Sisilia Sylviani; Hanni Garminia; Pudji Astuti
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.4

Abstract

The behavior of a dynamical system, in Willems's point of view, is the set of all trajectories of the system. Fuhrmann defines a behavior as a linear, shift invariant, and complete subspace of z-1Fm[[z-1]], the vector space consisting of power series in z-1 with coefficients in signal space W=Fm. In this paper we show that the behavior of a finite dimensional, time invariant discrete linear system in Willems's setting is also a behavior according to Fuhrmann's.
SEM-EDX Analysis of Laser Surface Alloying on Aluminum Noriah Bidin; Mundzir Abdullah; Mohd Syafik Shaharin; Yusef Abdul Alwafi; Dwi Gustiono Riban; Moh Yasin
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.5

Abstract

Microstructure and chemical composition changes on the alloyed aluminum surface were investigated using SEM-EDX analysis. A Q-switched Nd:YAg laser was focused to induce breakdown and plasma formation. The high plasma temperature and the shock wave pressure were responsible for speeding up the laser surface alloying process. The rapid heat and cooling process introduced a non-equilibrium condition causing changes in the microstructure as well as the chemical composition of the alloyed aluminum surface. The remelted layer and molten pools were realized after the aluminum received a power density greater than 5 x 108 Wcm-2. The chemical composition change confirms that the convection process had taken place during the alloying process.
A Note on Strongly Lower Semi-Continuous Functions and the Induced Fuzzy Topological Space Generated by Them Apu Kumar Saha; Debasish Bhattacharya
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.6

Abstract

A new class of functions called strongly lower semi-continuous (SLSC) functions is defined and its properties are studied. It is shown that the arbitrary supremum and finite infimum of SLSC functions are again SLSC. Using these functions, an induced fuzzy topological space, called s-induced fuzzy topological space on a topological space (X, T), is introduced. Moreover, some incorrect results on fuzzy topological spaces obtained previously by some authors are identified and modified accordingly. Examples of the newly defined induced space are given and their various properties are investigated. Interrelationships between a fuzzy topological space (X, F) and the s-induced fuzzy topological space generated by the crisp members of F are examined. In this process, different lower semi-continuities and induced fuzzy spaces generated by them have been defined in a general set up and their few properties have been studied.
g- Inverses of Interval Valued Fuzzy Matrices Arunachalam R. Meenakshi; Muniasamy Kaliraja
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.7

Abstract

In this paper, we have discussed the g-Inverses of Interval Valued Fuzzy Matrices (IVFM) as a generalization of g- inverses of regular fuzzy matrices. The existence and construction of g-inverses, {1, 2} inverses, {1, 3} inverses and {1, 4} inverses of Interval valued fuzzy matrix are determined in terms of the row and column spaces.
Development of an Inversion Method for Low Velocity Medium A. Afnimar; Andri Dian Nugraha; Ahmad Syahputra
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.math.fund.sci.2013.45.1.8

Abstract

The main problem with the inversion of a low velocity medium is the application of an appropriate ray tracing method after choosing a suitable model parameterization. Block parameterization is not suitable, because it is not capable of representing the velocity model well. A large amount of blocks with a small grid size are needed to express the model well, but in that case, a ray coverage problem will be encountered. A knot-point parameterization model is better suited than a block model, because it can express the velocity model well, while the number of variables is much smaller. Ray calculation using the pseudo-bending method is not appropriate for the velocity model because of an instability problem at high velocity gradients. The crucial problem of this method involves the initial ray-path that is optimized in order to obtain the "true" ray, but does not satisfy the Fermat principle. These problems can be solved by applying the eikonal-solver method, because this can handle high-velocity gradients and does not need an initial ray path. Using a suitable model parameterization and appropriate ray tracing method, the inversion can obtain good results that fit the desired output. Applying a block model and the pseudo-bending method will not produce the desired output.
Cover Vol. 45, No. 1 (2013) Journal of Mathematical and Fundamental Sciences
Journal of Mathematical and Fundamental Sciences Vol. 45 No. 1 (2013)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Page 1 of 1 | Total Record : 9


Filter by Year

2013 2013


Filter By Issues
All Issue Vol. 56 No. 3 (2024) Vol. 56 No. 1 (2024): (In Progress) Vol. 55 No. 3 (2024) Vol. 55 No. 2 (2023) Vol. 55 No. 1 (2023) Vol. 54 No. 3 (2023) Vol. 54 No. 2 (2022) Vol. 54 No. 1 (2022) Vol. 53 No. 3 (2021) Vol. 53 No. 2 (2021) Vol. 53 No. 1 (2021) Vol. 52 No. 3 (2020) Vol. 52 No. 2 (2020) Vol. 52 No. 1 (2020) Vol. 51 No. 3 (2019) Vol. 51 No. 2 (2019) Vol. 51 No. 1 (2019) Vol. 50 No. 3 (2018) Vol. 50 No. 2 (2018) Vol. 50 No. 1 (2018) Vol. 49 No. 3 (2017) Vol. 49 No. 2 (2017) Vol. 49 No. 1 (2017) Vol. 48 No. 3 (2016) Vol. 48 No. 2 (2016) Vol. 48 No. 1 (2016) Vol. 47 No. 3 (2015) Vol. 47 No. 2 (2015) Vol. 47 No. 1 (2015) Vol. 46 No. 3 (2014) Vol. 46 No. 2 (2014) Vol. 46 No. 1 (2014) Vol. 45 No. 3 (2013) Vol. 45 No. 2 (2013) Vol. 45 No. 1 (2013) Vol. 44 No. 3 (2012) Vol. 44 No. 2 (2012) Vol. 44 No. 1 (2012) Vol. 43 No. 3 (2011) Vol. 43 No. 2 (2011) Vol. 43 No. 1 (2011) Vol. 42 No. 2 (2010) Vol. 42 No. 1 (2010) Vol. 41 No. 2 (2009) Vol. 41 No. 1 (2009) Vol. 40 No. 2 (2008) Vol. 40 No. 1 (2008) Vol. 39 No. 1-2 (2007) Vol. 38 No. 2 (2006) Vol. 38 No. 1 (2006) Vol. 37 No. 2 (2005) Vol. 37 No. 1 (2005) Vol. 36 No. 2 (2004) Vol. 36 No. 1 (2004) Vol. 35 No. 2 (2003) Vol. 35 No. 1 (2003) Vol. 34 No. 2&3 (2002) Vol. 33 No. 3 (2001) Vol. 33 No. 2 (2001) Vol. 33 No. 1 (2001) Vol. 32 No. 2 (2000) Vol. 32 No. 1 (2000) Vol. 31 No. 3 (1999) Vol. 31 No. 2 (1999) Vol. 31 No. 1 (1999) Vol. 30 No. 3 (1998) Vol. 30 No. 2 (1998) Vol. 30 No. 1 (1998) Vol. 29 No. 1/2 (1996) Vol. 27 No. 3 (1994) Vol. 27 No. 2 (1994) Vol. 25 No. 2/3 (1992) Vol. 25 No. 1 (1992) Vol. 24 No. 2/3 (1991) Vol. 24 No. 1 (1991) Vol. 23 No. 1 (1990) Vol. 22 No. 1/2/3 (1989) Vol. 21 No. 2/3 (1988) Vol. 21 No. 1 (1988) Vol. 20 No. 1/2 (1987) Vol. 20 No. 3 (1987) Vol. 19 No. 2/3 (1986) Vol. 19 No. 1 (1986) Vol. 18 No. 2/3 (1985) Vol. 18 No. 1 (1985) Vol. 17 No. 3 (1984) Vol. 17 No. 2 (1984) Vol. 17 No. 1 (1984) Vol. 16 No. 3 (1983) Vol. 16 No. 2 (1983) Vol. 16 No. 1 (1983) Vol. 15 No. 3 (1982) Vol. 15 No. 2 (1982) Vol. 15 No. 1 (1982) Vol. 14 No. 1/2 (1981) Vol. 14 No. 3 (1981) Vol. 13 No. 1/2 (1980) Vol. 13 No. 3 (1980) Vol. 12 No. 3 (1979) Vol. 12 No. 2 (1979) Vol. 12 No. 1 (1979) Vol. 11 No. 3 (1978) Vol. 11 No. 2 (1977) Vol. 11 No. 1 (1976) Vol. 10 No. 3 (1976) Vol. 10 No. 2 (1975) Vol. 10 No. 1 (1975) Vol. 9 No. 3 (1975) Vol. 9 No. 2 (1975) Vol. 9 No. 1 (1974) Vol. 8 No. 3 (1974) Vol. 8 No. 2 (1974) Vol. 8 No. 1 (1974) Vol. 7 No. 4 (1974) Vol. 7 No. 3 (1973) Vol. 7 No. 2 (1973) Vol. 7 No. 1 (1973) Vol. 6 No. 4 (1972) Vol. 6 No. 3 (1972) Vol. 6 No. 2 (1971) Vol. 6 No. 1 (1971) Vol. 5 No. 1 (1970) Vol. 4 No. 4 (1970) Vol. 4 No. 3 (1969) Vol. 4 No. 2 (1968) Vol. 4 No. 1 (1967) Vol. 3 No. 4 (1965) Vol. 3 No. 3 (1965) Vol. 3 No. 2 (1964) Vol. 3 No. 1 (1964) Vol. 2 No. 4 (1963) Vol. 2 No. 3 (1963) Vol. 2 No. 2 (1962) Vol. 2 No. 1 (1962) Vol. 1 No. 4 (1961) Vol. 1 No. 3 (1961) Vol. 1 No. 2 (1961) Vol. 1 No. 1 (1961) More Issue