cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of Engineering and Technological Sciences
ISSN : 23375779     EISSN : 23385502     DOI : -
Core Subject : Engineering,
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere. Starting from Vol. 35, No. 1, 2003, full articles published are available online at http://journal.itb.ac.id, and indexed by Scopus, Index Copernicus, Google Scholar, DOAJ, GetCITED, NewJour, Open J-Gate, The Elektronische Zeitschriftenbibliothek EZB by University Library of Regensburg, EBSCO Open Science Directory, Ei Compendex, Chemical Abstract Service (CAS) and Zurich Open Repository and Archive Journal Database. Publication History Formerly known as: ITB Journal of Engineering Science (2007 – 2012) Proceedings ITB on Engineering Science (2003 - 2007) Proceedings ITB (1961 - 2002)
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol. 35 No. 2 (2003)" : 5 Documents clear
Analysis of Surface Wave Attenuation in Mangrove Forests Safwan Hadi; Hamzah Latief; Muliddin Muliddin
Journal of Engineering and Technological Sciences Vol. 35 No. 2 (2003)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.eng.sci.2003.35.2.1

Abstract

This paper presents an analytical study on surface wave attenuation in mangrove forest using analytical model developed by Massel et.al. (1999). The energy dissipation in the frequency domain is determined by treating the mangrove forest as a random media with certain characteristics using the geometry of mangrove trunks and their locations. Initial nonlinear governing equations are linearized using the concept of minimalization in the stochastic sense and interactions between mangrove trunks and roots have been introduced through the modification of the drag coefficients. To see the effectiveness of the mangrove forest in attenuating wave energy the analytical model was applied to two types of mangrove forest i.e. Rhizophora and Ceriops forests. The resulting rate of wave energy attenuation depends strongly on the density of the mangrove forest, and on diameter of mangrove roots and trunks. More effective wave energy attenuation is shown by Rhizophora.
Gas Deliverability Model with Different Vertical Wells Properties L. Mucharam; P. Sukarno; S. Siregar; Z. Syihab; E. Soewono; M. Apri; F. Irzal
Journal of Engineering and Technological Sciences Vol. 35 No. 2 (2003)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.eng.sci.2003.35.2.3

Abstract

We present here a gas deliverability computational model for single reservoir with multi wells. The questions of how long the gas delivery can be sustained and how to estimate the plateau time are discussed here. In order to answer such a question, in this case, a coupling method which consists of material balance method and gas flow equation method is developed by assuming no water influx in the reservoir. Given the rate and the minimum pressure of gas at the processing plant, the gas pressure at the wellhead and at the bottom hole can be obtained. From here, the estimation of the gas deliverability can be done. In this paper we obtain a computational method which gives direct computation for pressure drop from the processing plant to the wells, taking into account different well behavior. Here AOF technique is used for obtaining gas rate in each well. Further Tian & Adewumi correlation is applied for pressure drop model along vertical and horizontal pipes and Runge-Kutta method is chosen to compute the well head and bottom hole pressures in each well which then being used to estimate the plateau times. We obtain here direct computational scheme of gas deliverability from reservoir to processing plant for single reservoir with multi-wells properties. Computational results give different profiles (i.e. gas rate, plateau and production time, etc) for each well. Further by selecting proper flow rate reduction, the flow distribution after plateau time to sustain the delivery is computed for each well.
Characteristics of Response of Piezoelectric Actuators in Electron Flux Excitation Philip C. Hadinata; John A. Main
Journal of Engineering and Technological Sciences Vol. 35 No. 2 (2003)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.eng.sci.2003.35.2.2

Abstract

In this paper the working parameters of non-contact strain control for piezoelectric ceramics are evaluated. The piezoelectric material functions as an actuator that transforms electrical into mechanical energy, and the electrical input is carried out by electron flux on the positive surface. The sample is exposed to some quasi-static inputs, and its responses are recorded using strain gages. The data shows faster and more stable response in the positive regime, but significantly slower response with drift in the negative regime. An electron collector is introduced on the positive surface to enhance the response in the negative regime. Theoretical analyses of energy transfer and electron movements is discussed, and a string of working conditions for controlling the surface strain of piezoelectric material are given as conclusions.
H∞ Estimation Approach to Active Noise Control: Theory, Algorithm and Real-Time Implementation Bambang Riyanto
Journal of Engineering and Technological Sciences Vol. 35 No. 2 (2003)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.eng.sci.2003.35.2.5

Abstract

This paper presents an H∞ estimation approach to active control of acoustic noise inside an enclosure. It is shown how H∞ filter theory and algorithm can be effectively applied to active noise control to provide important robustness property. Real-time implementation of the algorithm is performed on Digital Signal Processor. Experimental comparison to conventional FxLMS algorithm for active noise control is presented for both single channel and multichannel cases. While providing some new results, this paper also serves as a brief review on H∞ filter theory and on active noise control.
A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups W. N. Tan; Andonowati Andonowati
Journal of Engineering and Technological Sciences Vol. 35 No. 2 (2003)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.eng.sci.2003.35.2.4

Abstract

We consider a low-dimensional model derived from the nonlinear-Schrödinger equation that describes the evolution of a special class of surface gravity wave groups, namely bichromatic waves. The model takes only two modes into account, namely the primary mode and the third order mode which is known to be most relevant for bichromatic waves with small frequency difference. Given an initial condition, an analytical expression for the maximal amplitude of the evolution of this initial wave group according to the model can be readily obtained. The aim of this investigation is to predict the amplification factor defined as the quotient between the maximal amplitude over all time & space and the initial maximal amplitude. Although this is a problem of general interest, as a case study, initial conditions in the form of a bichromatic wave group are taken. Using the low dimensional model it is found that the least upper bound of the maximal amplification factor for this bichromatic wave group is √2. To validate the analytical results of this model, a numerical simulation on the full model is also performed. As can be expected, good agreement is observed between analytical and numerical solutions for a certain range of parameters; when the initial amplitude is not too large, or when the difference of frequency is not too small. The results are relevant and motivated for the generation of waves in hydrodynamic laboratories.

Page 1 of 1 | Total Record : 5


Filter by Year

2003 2003


Filter By Issues
All Issue Vol. 55 No. 6 (2023) Vol. 55 No. 5 (2023) Vol. 55 No. 4 (2023) Vol. 55 No. 3 (2023) Vol. 55 No. 2 (2023) Vol. 55 No. 1 (2023) Vol. 54 No. 6 (2022) Vol. 54 No. 5 (2022) Vol. 54 No. 4 (2022) Vol. 54 No. 3 (2022) Vol. 54 No. 2 (2022) Vol. 54 No. 1 (2022) Vol. 53 No. 6 (2021) Vol. 53 No. 5 (2021) Vol. 53 No. 4 (2021) Vol. 53 No. 3 (2021) Vol. 53 No. 2 (2021) Vol. 53 No. 1 (2021) Vol. 52 No. 6 (2020) Vol. 52 No. 5 (2020) Vol. 52 No. 4 (2020) Vol 52, No 3 (2020) Vol. 52 No. 3 (2020) Vol. 52 No. 2 (2020) Vol 52, No 2 (2020) Vol. 52 No. 1 (2020) Vol 52, No 1 (2020) Vol 51, No 6 (2019) Vol. 51 No. 6 (2019) Vol. 51 No. 5 (2019) Vol 51, No 5 (2019) Vol. 51 No. 4 (2019) Vol 51, No 4 (2019) Vol. 51 No. 3 (2019) Vol 51, No 3 (2019) Vol. 51 No. 2 (2019) Vol 51, No 2 (2019) Vol 51, No 2 (2019) Vol 51, No 1 (2019) Vol 51, No 1 (2019) Vol. 51 No. 1 (2019) Vol 50, No 6 (2018) Vol 50, No 6 (2018) Vol. 50 No. 6 (2018) Vol 50, No 5 (2018) Vol 50, No 5 (2018) Vol. 50 No. 5 (2018) Vol 50, No 4 (2018) Vol. 50 No. 4 (2018) Vol 50, No 4 (2018) Vol 50, No 3 (2018) Vol. 50 No. 3 (2018) Vol 50, No 3 (2018) Vol. 50 No. 2 (2018) Vol 50, No 2 (2018) Vol 50, No 2 (2018) Vol. 50 No. 1 (2018) Vol 50, No 1 (2018) Vol. 49 No. 6 (2017) Vol 49, No 6 (2017) Vol 49, No 6 (2017) Vol 49, No 5 (2017) Vol 49, No 5 (2017) Vol. 49 No. 5 (2017) Vol 49, No 4 (2017) Vol. 49 No. 4 (2017) Vol 49, No 4 (2017) Vol 49, No 3 (2017) Vol 49, No 3 (2017) Vol. 49 No. 3 (2017) Vol. 49 No. 2 (2017) Vol 49, No 2 (2017) Vol 49, No 2 (2017) Vol 49, No 1 (2017) Vol. 49 No. 1 (2017) Vol. 48 No. 6 (2016) Vol 48, No 6 (2016) Vol 48, No 6 (2016) Vol 48, No 5 (2016) Vol. 48 No. 5 (2016) Vol 48, No 5 (2016) Vol. 48 No. 4 (2016) Vol 48, No 4 (2016) Vol 48, No 3 (2016) Vol. 48 No. 3 (2016) Vol. 48 No. 2 (2016) Vol 48, No 2 (2016) Vol 48, No 1 (2016) Vol. 48 No. 1 (2016) Vol. 47 No. 6 (2015) Vol 47, No 6 (2015) Vol. 47 No. 5 (2015) Vol 47, No 5 (2015) Vol. 47 No. 4 (2015) Vol 47, No 4 (2015) Vol. 47 No. 3 (2015) Vol 47, No 3 (2015) Vol 47, No 2 (2015) Vol. 47 No. 2 (2015) Vol. 47 No. 1 (2015) Vol 47, No 1 (2015) Vol. 46 No. 4 (2014) Vol 46, No 4 (2014) Vol. 46 No. 3 (2014) Vol 46, No 3 (2014) Vol. 46 No. 2 (2014) Vol 46, No 2 (2014) Vol 46, No 1 (2014) Vol. 46 No. 1 (2014) Vol 45, No 3 (2013) Vol. 45 No. 3 (2013) Vol. 45 No. 2 (2013) Vol 45, No 2 (2013) Vol 45, No 1 (2013) Vol. 45 No. 1 (2013) Vol 44, No 3 (2012) Vol. 44 No. 3 (2012) Vol 44, No 2 (2012) Vol. 44 No. 2 (2012) Vol. 44 No. 1 (2012) Vol 44, No 1 (2012) Vol. 43 No. 3 (2011) Vol 43, No 3 (2011) Vol 43, No 2 (2011) Vol. 43 No. 2 (2011) Vol 43, No 1 (2011) Vol. 43 No. 1 (2011) Vol 42, No 2 (2010) Vol. 42 No. 2 (2010) Vol 42, No 1 (2010) Vol. 42 No. 1 (2010) Vol. 41 No. 2 (2009) Vol 41, No 2 (2009) Vol 41, No 1 (2009) Vol. 41 No. 1 (2009) Vol. 40 No. 2 (2008) Vol 40, No 2 (2008) Vol. 40 No. 1 (2008) Vol 40, No 1 (2008) Vol. 39 No. 2 (2007) Vol 39, No 2 (2007) Vol. 39 No. 1 (2007) Vol 39, No 1 (2007) Vol 38, No 2 (2006) Vol. 38 No. 2 (2006) Vol 38, No 1 (2006) Vol. 38 No. 1 (2006) Vol 37, No 2 (2005) Vol. 37 No. 2 (2005) Vol 37, No 1 (2005) Vol. 37 No. 1 (2005) Vol. 36 No. 2 (2004) Vol 36, No 2 (2004) Vol 36, No 1 (2004) Vol. 36 No. 1 (2004) Vol 35, No 2 (2003) Vol. 35 No. 2 (2003) Vol. 35 No. 1 (2003) Vol 35, No 1 (2003) More Issue