Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
Starting from Vol. 35, No. 1, 2003, full articles published are available online at http://journal.itb.ac.id, and indexed by Scopus, Index Copernicus, Google Scholar, DOAJ, GetCITED, NewJour, Open J-Gate, The Elektronische Zeitschriftenbibliothek EZB by University Library of Regensburg, EBSCO Open Science Directory, Ei Compendex, Chemical Abstract Service (CAS) and Zurich Open Repository and Archive Journal Database.
Publication History
Formerly known as:
ITB Journal of Engineering Science (2007 – 2012)
Proceedings ITB on Engineering Science (2003 - 2007)
Proceedings ITB (1961 - 2002)
Articles
10 Documents
Search results for
, issue
"Vol. 48 No. 1 (2016)"
:
10 Documents
clear
Preliminary Study on Treatment of Palm Oil Mill Effluent (POME) by Sand Filtration-DBD Plasma System
Ariadi Hazmi;
Reni Desmiarti;
Eka Putra Waldi;
Primas Emeraldi
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.3
In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane ï¬ltration are generally applied as conventional treatments of palm oil mill effluent (POME). In this study, a sand filtration-dielectric barrier discharge (DBD) system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD), biological oxygen demand (BOD5), and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.
Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data
Widi Nugraha;
Indra Djati Sidi
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.6
Load and Resistance Factored Design (LRFD) method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM) vehicular loads measurement in Northern Java highway, Cikampek - Pamanukan, West Java (2011), used in as statistical loads variable. A 25 m simple span bridge with reinforced concrete T-girder is used as a model for structural analysis due to WIM measured and nominal vehicular load based on RSNI T-02-2005, with applied bending moment of girder as the output. The distribution fitting result of applied bending moment due to WIM measured vehicular loads is lognormal. The maximum bending moment due to RSNI T-02-2005 nominal vehicular load is 842.45 kN-m and has probability of exceedance of 5x10-5. It can be concluded, for this study, that the bridge designed using RSNI T-02-2005 is safely designed, since it has reliability index, β of 5.02, higher than target reliability, β ranging from 3.50 or 3.72.
Development of Risk Coefficient for Input to New Indonesian Seismic Building Codes
I Wayan Sengara;
Indra Djati Sidhi;
Andri Mulia;
Muhammad Asrurifak;
Daniel Hutabarat
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.5
In 2010 a national team (Team 9) developed the hazard curve and maximum considered earthquake (MCE) for the whole Indonesian area. The results were further applied in this study. Risk-targeted ground motions (RTGM) with 1% probability of building collapse in 50 years were developed by integrating the hazard curve with the structural capacity distribution. Parametric study on various variables that affect the log-normal standard deviation suggests a value of 0.7. In the effort to obtain the RTGM for the whole Indonesian region, integration was carried out using definite integration in which the curves are split into thin vertical strips and the areas below each curve are multiplied and summed. Detailed procedures and verification are given in this paper. An example of RTGM calculation was carried out for Jakarta City and then applied to the whole Indonesian region. Risk coefficients defining the ratio between RTGM and MCE were eventually developed and mapped. Risk coefficient development was generated for two periods of interest, i.e. a short time period (T = 0.2 seconds) and a 1-second period, respectively. Based on the results, for the period of 1.0 seconds 55% of Indonesian cities/districts have a risk coefficient in the range of 0.9 to 1.1 and about 37% in the range of 0.7 to 0.9, with only 5% in the range of 1.1 to 1.25.
An Optimized Method for Terrain Reconstruction Based on Descent Images
Xu Xinchao;
Zheng Zhenzhen;
Xu Aigong;
Liu Shaochuang
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.4
An optimization method is proposed to perform high-accuracy terrain reconstruction of the landing area of Chang'e III. First, feature matching is conducted using geometric model constraints. Then, the initial terrain is obtained and the initial normal vector of each point is solved on the basis of the initial terrain. By changing the vector around the initial normal vector in small steps a set of new vectors is obtained. By combining these vectors with the direction of light and camera, the functions are set up on the basis of a surface reflection model. Then, a series of gray values is derived by solving the equations. The new optimized vector is recorded when the obtained gray value is closest to the corresponding pixel. Finally, the optimized terrain is obtained after iteration of the vector field. Experiments were conducted using the laboratory images and descent images of Chang'e III. The results showed that the performance of the proposed method was better than that of the classical feature matching method. It can provide a reference for terrain reconstruction of the landing area in subsequent moon exploration missions.
Investigation of Electrochemical and Morphological Properties of Mixed Matrix Polysulfone-Silica Anion Exchange Membrane
Khoiruddin Khoiruddin;
I Gede Wenten
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.1
Mixed matrix anion exchange membranes (AEMs) were synthesized using dry-wet phase inversion. The casting solutions were prepared by dispersing finely ground anion-exchange resin particles in N,N-dimethylacetamide (DMAc) solutions of polysulfone (PSf). Subsequently, nanosilica particles were introduced into the membranes. The results show that evaporation time (tev) and solution composition contributed to membrane properties formation. A longer tev produces membranes with reduced void fraction inside the membranes, thus the amount of water adsorbed and membrane conductivity are reduced. Meanwhile, the permselectivity was improved by increasing tev, since a longer tev produces membranes with a narrower channel for ion migration and more effective Donnan exclusion. The incorporation of 0.5 %-wt nanosilica particles into the polymer matrix led to conductivity improvement (from 2.27 to 3.41 mS.cm-1). This may be associated with additional pathway formation by hydroxyl groups on the silica surface that entraps water and assists ion migration. However, at further silica loading (1.0 and 1.5 %-wt), these properties decreased (to 1.9 and 1.4 mS.cm-1 respectively), which attributed to inaccessibility of ion-exchange functional groups due to membrane compactness. It was found from the results that nanosilica contributes to membrane formation (increases casting solution viscosity then reduces void fraction) and membrane functional group addition (provides hydroxyl groups).
Synthesis of Acrolein from Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration
Akhmad Zainal Abidin;
Rani Guslianti Afandi;
Hafis Pratama Rendra Graha
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.2
Acrolein is currently produced using propylene from crude oil while its price and scarcity are increasing. A renewable material such as glycerol is an attractive alternative for acrolein production. It can be obtained from crude palm oil (CPO) and is a byproduct of biodiesel production. Besides being able to compete economically, glycerol is an environmentally friendly material. The purpose of this study is to synthesize acrolein from glycerol using FePO4 catalyst in liquid phase dehydration. The catalyst was prepared by three different methods: hydrothermal (catalyst A), deposition at Fe/P = 1.15 (catalyst B), and deposition at Fe/P = 1.20 (catalyst C). The experimental reaction temperature was varied at 220, 240 and 260 °C under constant atmospheric pressure. The results showed that catalyst C provided the best yield (91%), followed by catalyst A (90%) and catalyst B (82%). The increasing reaction temperature showed a tendency to increase the yield of acrolein, while the presence of oxygen reduced the yield of acrolein and allowed the reaction to produce more side products such as glycerol propanal, acetaldehyde, and propionate. Catalyst reuse without any regeneration resulted in a yield profile of acrolein that continued to decline.
Pervaporation of Acetic Acid-Water Mixture Using Silica Membrane Prepared by Sol-Gel Method
Samuel P. Kusumocahyo;
Masao Sudoh
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.8
Silica membranes were developed and tested for the separation of acetic acid and water by pervaporation. Thin microporous silica membranes were prepared on a porous alumina tube by sol-gel method using tetraethyl orthosilicate (TEOS) as the silica precursor. Colloidal and polymeric silica sols were prepared by hydrolysis of TEOS. The pervaporation experiment results revealed that the silica membranes showed water selectivity towards acetic acid. The permeate flux and the separation factor were strongly influenced by the composition of the silica sols. For a feed concentration of 90 wt% acetic acid, the permeate flux varied between 0.016 to 0.91 kg/m2 h, with the separation factor varying between 3.7 and 324.
The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant)
Herto Dwi Ariesyady;
Rifka Fadilah;
Kurniasih Kurniasih;
Aminudin Sulaeman;
Edwan Kardena
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.7
The Bojongsoang Wastewater Treatment Plant (WWTP) serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease wastewater treatment performance. More knowledge about the relationship between the nutrients concentration and algae blooming conditions, such as microalgae diversity, is needed to control and maintain the performance of the wastewater treatment plant. Therefore this study was conducted, in order to reveal the diversity of microalgae in the stabilization pond system and its relationship with the water characteristics of the comprising ponds. The results showed that the water quality in the stabilization pond system of Bojongsoang WWTP supported rapid growth of microalgae, where most rapid microbial growth occurred in the anaerobic pond. The microalgae diversity in the stabilization ponds was very high, with various morphologies, probably affiliated with blue-green algae, green algae, cryptophytes, dinoflagellates and diatoms. This study has successfully produced information on microalgae diversity and abundance profiles in a stabilization pond system.
Recent Development of the Empirical Basis for Prediction of Vortex Induced Vibrations
Carl M. Larsen;
Elizabeth Passano;
Halvor Lie
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2016.48.1.9
This paper describes the research activity related to VIV that has taken place at NTNU and MARINTEK in Trondheim during the last years. The overall aim of the work has been increased understanding of the VIV phenomenon and to improve the empirical basis for prediction of VIV. The work has included experiments with flexible beams in sheared and uniform flow and forced motions of short, rigid cylinders. Key results in terms of hydrodynamic coefficients and analysis procedures have been implemented in the computer program VIVANA, which has resulted in new analysis options and improved hydrodynamic coefficients. Some examples of results are presented, but the main focus of the paper is to give an overview of the work and point out how the new results can be used in order to improve VIV analyses.
Cover Vol. 48 No.1, 2016
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences Vol. 48 No. 1 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar