Guritno, Hanif Bagus
Program Studi Informatika

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimasi Parameter pada Fast Correlation Based Fiter Menggunakan Algoritme Genetika untuk Klasifikasi Metagenom Haryanto, Toto; Guritno, Hanif Bagus; Kustiyo, Aziz; Hermadi, Irman
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 4, No 2 (2018): Volume 4 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (603.936 KB) | DOI: 10.26418/jp.v4i2.28011

Abstract

Metagenome merupakan mikroorganisme yang diambil secara langsung dari alam. Proses sequencing genom dari metagenome mengakibatkan bercampurnya berbagai organisme. Hal ini menyebabkan kesulitan pada proses perakitan DNA. Oleh karena itu, dibutuhkan proses pemilahan yang disebut binning. Pada proses binning dengan pendekatan komposisi, teknik yang dilakukan adalah dengan supervised learning. Salah satu tahapan dalam supervised learning yaitu ekstraksi fitur, penelitian ini menggunakan metode ektraksi fitur n-mers. Besarnya parameter n pada metode ekstraksi fitur n-mers akan mengakibatkan dimensi fitur yang tinggi. Penelitian ini bertujuan untuk menerapkan algorime fast-correlation based filter (FCBF) untuk mereduksi dimensi fitur yang dihasilkan n-mers dan mengoptimasi parameter threshold pada fast-correlation based filter menggunakan algoritme genetika. Penelitian ini diuji menggunakan klasifikasi k-nearest neighbour. Performa terbaik diperoleh ketika n = 7 dan k = 3 dengan akurasi mencapai 99.41% dengan nilai threshold 0.67788. Dengan optimasi, waktu komputasi menjadi lebih efisien karena jumlah fitur sudah tereduksi.