Claim Missing Document
Check
Articles

Found 4 Documents
Search

Multi-Objective Optimization Dispatch Based Energy Management of A Microgrid Running Under Grid Connected and Standalone Operation Mode Lagouir, Marouane; Badri, Abdelmajid; Sayouti, Yassine
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.34656

Abstract

This paper presents a novel optimization approach for a day-ahead power management and control of a DC microgrid (MG). The multi-objective optimization dispatch (MOOD) problem involves minimizing the overall operating cost, pollutant emission levels of (NOx, SO2 and CO2) and the power loss cost of the conversion devices. The weighted sum method is selected to convert the multi-objective optimization problem into a single optimization problem. Then, analytic hierarchy process (AHP) method is applied to determine the weight coefficients, according to the preference of each objective function. The system’s performance is evaluated under both grid connected and standalone operation mode, considering power balancing, high level penetration of renewable energy, optimal scheduling of charging/discharging of battery storage system, control of load curtailment and the system technical constraints. Ant lion optimizer (ALO) method is considered for handling MOOD, and the performance of the proposed algorithm is compared with other known heuristic optimization techniques.  The simulation results prove the effectiveness and the capability of the developed approach to deal better with the coordinated control and optimization dispatch problem.They also revealed that economically running the MG system under grid connected mode can reduce the overall cost by around 4.70% compared to when it is in standalone operation mode.
Solving Multi-Objective Energy Management of a DC Microgrid using Multi-Objective Multiverse Optimization Lagouir, Marouane; Badri, Abdelmajid; Sayouti, Yassine
International Journal of Renewable Energy Development Vol 10, No 4 (2021): November 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.38909

Abstract

This paper deals with the multi-objective optimization dispatch (MOOD) problem in a DC microgrid. The aim is to formulate the MOOD to simultaneously minimize the operating cost, pollutant emission level of (NOx, SO2 and CO2) and the power loss of conversion devices.  Taking into account the equality and inequality constraints of the system. Two approaches have been adopted to solve the MOOD issue. The scalarization approach is first introduced, which combines the weighted sum method with price penalty factor to aggregate objective functions and obtain Pareto optimal solutions. Whilst, the Pareto approach is based on the implementation of evolutionary multi-objective optimization solution. Single and multi-objective versions of multi-verse optimizer algorithm are, respectively, employed in both approaches to handle the MOOD. For each time step, a fuzzy set theory is selected to find the best compromise solution in the Pareto optimal set. The simulation results reveal that the Pareto approach achieves the best performances with a considerable decrease of 28.96 $/day in the daily operating cost, a slight reduction in the power loss of conversion devices from 419.79 kWh to 419.29 kWh, and in less computational time. While, it is noticing a small increment in the pollutant emission level from 11.54 kg/day to 12.21 kg/day, for the daily microgrid operation. This deviation can be fully covered when comparing the cost related to the treatment of these pollutants, which is only 5.55 $/day, to the significant reduction in the operating cost obtained using the Pareto approach.
A lightweight YOLOv5 for real-time dangerous weapons detection Khalfaoui, Aicha; Badri, Abdelmajid; El Mourabit, Ilham
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp1838-1844

Abstract

Deep neural networks are currently employed to detect weapons, and although these techniques provide a high level of accuracy, it still suffers from large weight parameters and a slow inference speed. When it comes to real-world applications, such as weapon detection, these methods are often not suitable for deployment on embedded devices. Because of the huge number of parameters and poor efficiency. The most recent object detection technique, which belongs to the YOLOv5 class, is commonly used for detecting weapons. However, it faces some difficulties such as high computational parameters and an unfavorable detection rate. to solve these shortcomings. an enhanced lightweight Yolov5s approach is suggested. Which consists of a combination of YOLOv5 and GhostNet modules. To evaluate the efficacy of the suggested technique, a set of experiments was performed on the Sohas weapon dataset., which is commonly used as a reference dataset in the field. Compared to the original YOLOv5, the results indicate a slight increase in the proposed model's mean Average Precision (mAP). Furthermore, there has been a reduction of 2.7 in GFLOPs and weights, and the number of model parameters has decreased by 1.42.
Smart wearable glove for enhanced human-robot interaction using multi-sensor fusion and machine learning Herbaz, Nourdine; El Idrissi, Hassan; Sabir, Hamza; Badri, Abdelmajid
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5162-5172

Abstract

Hand gesture recognition (HGR) using flexible sensors (flex-sensor) and the MPU6050 sensor has proved to be a key area of research in human-machine interaction, with major applications in biasing, rehabilitation, and assisted robotics. This paper proposes a wearable intelligent glove designed to operate a robotics arm in real time, relying on multi-sensor fusion and machine learning methods to enhance the system's responsiveness and precision. The proposed system enables the intuitive reproduction of hand movements and precise control of the robotic arm. In the context of Industry 4.0 and internet of things (IoT), the classification of gestures is necessary for maintaining operational efficiency. To guarantee gesture recognition, data signals from the smart glove are collected and trained by a recurrent neural network (RNN), which achieves 98.67% accuracy for real-time classification of seven gestures. Beyond industrial applications, the wearable smart glove can be exploited in a recognized circuit of all systems, including rehabilitation exercises that involve recording the progression of muscular activity for the assessment of motor functions and serve as a tool for patient recovery.