Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cost-aware optimal resource provisioning Map-Reduce scheduler for hadoop framework Bhaskar, Archana; Ranjan, Rajeev
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp1262-1271

Abstract

Distributed data processing model has been one of the primary components in the case of data-intensive applications; furthermore, due to advancements in technologies, there has been a huge volume of data generation of diverse nature. Hadoop map reduce framework is responsible for adopting the ease of deployment mechanism in an open-source framework. The existing Hadoop MapReduce framework possesses high makespan time and high Input/Output overhead and it mainly affects the cost of a model. Thus, this research work presents an optimized cost aware resource provisioning MapReduce model also known as the cost-effective resource provisioning MapReduce (CRP-MR) model. CRP-MR model introduces the two integrated approaches to minimize the cost; at first, this model presents the optimal resource optimization and optimal Input/Output optimization cleansing in the Hadoop MapReduce (HMR) scheduler. CRP-MR is evaluated considering the bioinformatics dataset and CRP-MR performs better than the existing model. 
Agriculture data analysis using parallel k-nearest neighbour classification algorithm Muninarayanappa, Vimala; Ranjan, Rajeev
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 13, No 2: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v13.i2.pp332-340

Abstract

A cost-effective and effective agriculture management system is created by utilizing data analytics (DA), internet of things (IoT), and cloud computing (CC). Geographic information system (GIS) technology and remote sensing predictions give users and stakeholders access to a variety of sensory data, including rainfall patterns and weather-related information (such as pressure, humidity, and temperatures). They have unstructured format for sensory data. The current systems do a poor job of analysing such data since they cannot effectively balance speed and memory usage. An effective categorization model (ECM) on agriculture management system is proposed to address this research difficulty. First, a classification technique called priority-based k-nearest neighbour (KNN) is provided to categorize unstructured multi-dimensional data into a structured form. Additionally, the Hadoop MapReduce (HMR) framework is used to do classification utilizing a parallel approach. Data from real-time IoT sensors used in agriculture is the subject of experiments. The suggested approach significantly outperforms previous approaches that are computing time, memory efficiency, model accuracy, and speedup.