Borra, Subba Reddy
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Secure aware software development life cycle on medical datasets by using firefly optimization and machine learning techniques Obulesu, Ooruchintala; Suneel, Sajja; Jangili, Sudhakar; Ledalla, Sukanya; Swetha, Ballepu; Borra, Subba Reddy
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4195-4203

Abstract

The abstract highlights the critical need for securing sensitive medical data, emphasizing the challenges in the medical domain due to the confidentiality of patient, disease, doctor, and staff information. The proposed study introduces a novel approach using machine learning, specifically integrating the firefly optimization technique with the random forest algorithm, to classify medical data in a secure manner. The significance lies in addressing the security concerns associated with medical datasets, offering a solution that prioritizes confidentiality throughout the software development life cycle (SDLC). The proposed algorithm achieves an impressive accuracy of 96%, showcasing its efficacy in providing a robust and secure framework for the development of applications involving medical data. This research contributes to advancing the field of medical data security, offering a practical solution for safeguarding sensitive information in healthcare applications.
A brief study on rice diseases recognition and image classification: fusion deep belief network and S-particle swarm optimization algorithm Jayaram, Miryabbelli; Kalpana, Gudikandhula; Borra, Subba Reddy; Bhavani, Battu Durga
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6302-6311

Abstract

In the regions of southern Andhra Pradesh, rice brown spot, rice blast, and rice sheath blight have emerged as the most prevalent diseases. The goal of this research is to increase the precision and effectiveness of disease diagnosis by proposing a framework for the automated recognition and classification of rice diseases. Therefore, this work proposes a hybrid approach with multiple stages. Initially, the region of interest (ROI) is extracted from the dataset and test images. Then, the multiple features are extracted, such as color-moment-based features, grey-level cooccurrence matrix (GLCM)-based texture, and shape features. Then, the S-particle swarm optimization (SPSO) model selects the best features from the extracted features. Moreover, the deep belief network (DBN) model trained by SPSO is based on optimal features, which classify the different types of rice diseases. The SPSO algorithm also optimized the losses generated in the DBN model. The suggested model achieves a hit rate of 94.85% and an accuracy of 97.48% with the 10-fold cross-validation approach. The traditional machine learning (ML) model is significantly less accurate than the area under the receiver operating characteristic curve (AUC), which has an accuracy of 97.48%.