Claim Missing Document
Check
Articles

Found 3 Documents
Search

60 GHz millimeter-wave indoor propagation path loss models for modified indoor environments Qasem, Nidal; Alkhawatrah, Mohammad
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2737-2752

Abstract

The 60 GHz band has been selected for short-range communication systems to meet consumers’ needs for high data rates. However, this frequency is attenuated by obstacles. This study addresses the limitations of the 60 GHz band by modifying indoor environments with square loop (SL) frequency selective surfaces (FSSs) wallpaper, thereby increasing its utilization. The SL FSS wallpaper response at a 61.5 GHz frequency has been analyzed using both MATLAB and CST Studio Suite software. ‘Wireless InSite’ is also used to demonstrate enhanced wave propagation in a building modified with SL FSSs wallpaper. The demonstration is applied to multiple input multiple output system to verify the effectiveness of FSSs on such systems’ capacity, as well as the effect of the human body on capacity. Simulation results presented here show that modifying a building using SL FSS wallpaper is an attractive scheme for significantly improving the indoor 60 GHz wireless communications band. This paper also presents and compares two large-scale indoor propagation path loss models, the close-in (CI) free space reference distance model and the floating intercept (FI) model. Data obtained from ‘Wireless InSite’ over distances ranging from 4 to 14.31 m is analyzed. Results show that the CI model provides good estimation and exhibits stable behavior over frequencies and distances, with a solid physical basis and less computational complexity when compared to the FI model.
Buffers balancing of buffer-aided relays in 5G non-orthogonal multiple access transmission internet of things networks Alkhwatrah, Mohammad; Qasem, Nidal
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1774-1782

Abstract

Buffer-aided cooperative non-orthogonal multiple access (NOMA) enhances the efficiency of utilizing the spectral by allowing more users to share the same re- sources to establish massive connectivity. This is remarkably attractive in the fifth generation (5G) and beyond systems, where a massive number of links is essential like in the internet of things (IoT). However, the capability of buffer co-operation in reducing the outage is limited due to empty and full buffers, where empty buffers can not transmit and full buffers can not receive data packets. Therefore, in this paper, we propose balancing the buffer content of the inter-connected relays, so the buffers that are more full send packets to the emptier buffers, hence all buffers are more balanced and farther from being empty or full. The simulations show that the proposed balancing technique has improved the network outage probability. The results show that the impact of the balancing is more effective as the number of relays in the network is increased. Further- more, utilizing the balancing with a lower number of relays may lead to better performance than that of more relays without balancing. In addition, giving the balancing different levels of priorities gives different levels of enhancement.
Graphene-based reconfigurable FSS for dynamic millimeterwave OAM beam generation Qasem, Nidal
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i3.pp1608-1621

Abstract

This research paper explores the dynamic generation of orbital angular momentum (OAM) beams at millimeter-wave (mm-wave) frequencies using intelligent reconfigurable metasurfaces (IRM). The ability to dynamically control OAM properties is crucial for unlocking these beams’ full potential. This paper proposes a novel method utilizing a frequency-selective surface (FSS) integrated with reconfigurable graphene to generate an IRM. By carefully designing the FSS elements and controlling the graphene’s electrical conductivity, the system can generate and manipulate mm-wave OAM beams with different topological charges. With the suggested IRM structure, a conversion efficiency of nearly 80% can be achieved in converting the circularly polarized incident wave into its cross-polarized component at 30.7 GHz, with an overall thickness of 0.067 λ. This research has significant implications for advancing mm-wave communications by providing additional spatial dimensions for multiplexing and enhancing system capacity.