Claim Missing Document
Check
Articles

Found 11 Documents
Search
Journal : Computatio : Journal of Computer Science and Information Systems

Peramalan Pertumbuhan Jumlah Outlet Menggunakan Metode Gated Recurrent Unit (Studi Kasus: PT XYZ) Suluh, David; Herwindiati, Dyah Erny; Hendryli, Janson
Computatio : Journal of Computer Science and Information Systems Vol. 8 No. 1 (2024): Computatio: Journal of Computer Science and Information Systems
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v8i1.21234

Abstract

Sebagai perusahaan telekomunikasi, PT XYZ mengguanakan outlet seluler sebagai mitra untuk melakukan pendistribusian komoditas mereka. Dalam memperluas jaringan outlet seluler merka, PT XYZ tentu perlu memikirkan strategi bisnis yang tepat agar pertumbuhan jumlah outlet dapat menjadi lebih maksimal.Peramalan dapat digunakan sebagai acuan dalam strategi bisnis dan meningkatkan efektivitas rencana penyebaran outlet. Penilitian ini membahas peramalan pertumbuhan jumlah outlet menggunakan metode Gated Recurrent Unit yang berfungsi untuk melakukan peramalan atau prediksi jumlah outlet yang dapat diraih oleh PT XYZ. Data yang digunakan merupakan data outlet yang ada di PT XYZ dimana data ini akan dikelempokkan berdasarkan minggu ketika outlet bergabung. Proses pelatihan data menggunakan 80% dari total dataset dan pengujian menggunakan 20% dari total dataset. Pada proses pengujian, model mendapatkan hasil evaluasi MAE sebesar 0.1230 ,RMSE sebersar 0.2103 dan MSE sebesar 0.0442.
Pemetaan Kecamatan di Wilayah Bogor Berdasarkan Tipe Lahan dengan Metode Gradient Boosting Susilo, Venezia Valen; Herwindiati, Dyah Erny; Hendryli, Janson
Computatio : Journal of Computer Science and Information Systems Vol. 8 No. 2 (2024): Computatio: Journal of Computer Science and Information Systems
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v8i2.15829

Abstract

Kabupaten Kota Bogor merupakan tempat Gunung Salak, sumber mata air Jakarta, berada sehingga untuk air sampai di Jakarta, air harus melalui Bogor terlebih dahulu. Hal ini mengakibatkan perubahan terhadap lahan di Bogor akan berpengaruh pada proses aliran air dari Gunung Salak ke Jakarta. Oleh karena itu, dibutuhkan suatu sistem yang dapat digunakan untuk memantau perubahan fungsi lahan di Bogor. Sistem ini, diharapkan dapat memberi informasi tentang alih fungsi lahan secara periodik yang terjadi di daerah Bogor dan diharapkan dapat membantu pihak-pihak yang terkait dalam penanganan dampak-dampak yang terjadi akibat alih fungsi lahan. Data yang diperlukan adalah citra Landsat 8 band 2, 3, 4, 5, 6, dan 7 yang telah melalui proses pra-pemrosesan untuk kemudian diklasifikasikan dengan menggunakan model yang dibangun dengan metode Gradient Boosting Regression untuk klasifikasi. Model dibangun dengan nilai learning rate 0.1 dan banyak pohon 50. Akurasi yang didapat dari model ini adalah 99.3349% untuk data latih, 99.1658% untuk data validasi, dan membutuhkan waktu 13.91376 detik.
Perbandingan Metode Ekstraksi Fitur pada Sistem Pencarian Produk E-Commerce Berbasis Citra Hendryli, Janson; Herwindiati, Dyah Erny; Halim, Henry; Nagaputra, Hongi
Computatio : Journal of Computer Science and Information Systems Vol. 9 No. 1 (2025): Computatio: Journal of Computer Science and Information Systems
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v9i1.33877

Abstract

Sistem temu kembali atau pencarian produk berbasis citra merupakan teknik pencarian yang bergantung pada konten suatu citra tanpa bergantung pada metadata yang umumnya digunakan pada pencarian berbasis teks. Untuk mendapatkan informasi obyek yang ada dalam suatu citra, berbagai metode ekstraksi fitur dapat digunakan. Tiga metode ekstraksi fitur, yaitu fitur warna, bentuk, dan tekstur, beserta kombinasi dari ketiganya dibahas pada penelitian ini. Fitur warna didapatkan dengan metode color moments dan metode histogram of gradients digunakan untuk ekstraksi fitur bentuk. Sedangkan, metode gray level co-occurrence matrix digunakan untuk ekstraksi fitur tekstur. Sementara itu, metode k-means clustering digunakan untuk membandingkan kesamaan antara citra pada basis data dengan citra kueri. Sistem kemudian menghasilkan 40 produk dengan kemiripan paling besar. Perbandingan dari metode-metode ekstraksi fitur tersebut beserta kombinasinya kemudian diuji dalam dua tahapan. Tahapan pertama adalah untuk mengetahui jumlah klaster terbaik dari metode k-means clustering. Dalam pengujian ini, metrik evaluasi yang digunakan adalah skor silhouette. Dari pengujian, jumlah klaster terbaik untuk fitur bentuk adalah 10. Jumlah klaster terbaik untuk kombinasi fitur warna dan bentuk adalah 4 klaster. Klaster terbaik untuk kombinasi fitur tekstur dan bentuk, serta kombinasi seluruh fitur warna, tekstur, dan bentuk adalah masing-masing sejumlah 2 klaster. Skor silhouette terbaik didapatkan dari kombinasi fitur tekstur dan bentuk, yaitu sebesar 0.658663941. Pengujian kedua adalah melihat mean average precision dari 40 hasil teratas menggunakan kombinasi fitur tersebut. Berdasarkan pengujian, fitur bentuk memberikan hasil terbaik, terutama untuk jenis produk dress.
Program Konversi Citra Notasi Balok Menjadi Notasi Angka Gunawan, Hendy; Hendryli, Janson; Herwindiati, Dyah Erny
Computatio : Journal of Computer Science and Information Systems Vol. 2 No. 2 (2018): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v2i2.2278

Abstract

The Image Conversion Program of Music Notation being Numeric Notation is a character recognition system that accepts input in form of music notation image that produces an output of a DOCX file containing the numeric notation from the input image. Music notation has notation value, ritmic value and written with a music stave. The system consists of four main processes: preprocessing (grayscale and thresholding), notation line segmentation, notation character segmentation, and template matching. Template matching is used to recognize the music notation that obtained after segmentation. The recognition process obtained by comparing the image with the template image that has been inputted before to the database. This system has 100% success rate on segmentation of the character and success rate 38,4843% on the character recognition with template matching.
KLASIFIKASI CITRA BATIK INDONESIA DAN MALAYSIA DENGAN METODE MODIFIED DISCRIMINANT ANALYSIS Cynthia, Cynthia; Hendryli, Janson; Herwindiati, Dyah Erny
Computatio : Journal of Computer Science and Information Systems Vol. 3 No. 1 (2019): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v3i1.2973

Abstract

The application of Indonesian and Malaysian batik image classification using the Linear Discriminant Analysis (LDA) and Modified Discriminant Analysis (MDA) method is an introduction application that is used to classify images in the form of batik. Making this application uses the Java programming language to run feature retrieval methods, namely Color Histogram and Daubechies Wavelet and classification methods, namely LDA and MDA. Testing is done by blackbox testing method and confusion matrix. Tests are performed using color features, texture features, and a combination of training images and new test images. The best percentage test results are testing using color features, whereas with texture and the combination of both features get a slightly lower test percentage result.Aplikasi klasifikasi citra batik Indonesia dan Malaysia dengan metode Linear Discriminant Analysis (LDA) dan Modified Discriminant Analysis (MDA) merupakan aplikasi pengenalan yang digunakan untuk mengklasifikasi citra berupa batik. Pembuatan aplikasi ini menggunakan bahasa pemrograman Java untuk menjalankan metode pengambilan fitur yaitu Color Histogram dan Daubechies Wavelet dan metode pengklasifikasian yaitu LDA dan MDA. Pengujian dilakukan dengan metode blackbox testing dan matriks konfusi. Pengujian dilakukan dengan menggunakan fitur ciri warna, ciri tekstur, dan gabungan dari citra latih dan citra uji baru. Hasil persentase pengujian terbaik adalah pengujian dengan menggunakan ciri warna, sedangkan dengan ciri tekstur dan gabungan mendapatkan hasil persentase pengujian sedikit rendah.
KLASIFIKASI KAIN TENUN BERDASARKAN TEKSTUR & WARNA DENGAN METODE K-NN Kevin, Kevin; Hendryli, Janson; Herwindiati, Dyah Erny
Computatio : Journal of Computer Science and Information Systems Vol. 3 No. 2 (2019): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v3i2.6028

Abstract

Image classification of woven cloth based on texture and color using Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), Color Moments and classification method KNearest Neighbour (KNN) is an application for classifying motive on woven cloth. The development of this application is using Python language programming for classification system and Android studio which using Java language programming as Front-end. Classification system consist of two main process namely feature extraction process and classification process. Feature extraction process is using GLCM, LBP and Color Moments which produce feature vector for every method and classification process is using KNN method. Feature used for classification process is feature vector which has best result. Based on experiment result, the best method that produce best feature vector is LBP method with accuracy percentage higher than other method.  Klasifikasi citra kain tenun berdasarkan tekstur dan warna dengan metode Gray Level Cooccurrence Matrix (GLCM), Local Binary Pattern (LBP), Color Moments dan metode klasifikasi K-Nearest Neighbour (KNN) merupakan aplikasi yang digunakan untuk mengklasifikasi motif yang ada pada kain tenun. Pembuatan aplikasi ini menggunakan bahasa pemrograman Python sebagai sistem klasifikasi dan Android studio yang menggunakan bahasa pemrograman Java sebagai Front-end. Sistem klasifikasi dibagi menjadi dua proses utama yaitu proses ekstraksi fitur dan proses klasifikasi. Proses ekstraksi fitur dilakukan dengan metode GLCM, LBP dan Color Moments yang menghasilkan fitur vektor untuk setiap metode dan proses klasifikasi dilakukan dengan metode K-NN. Fitur yang digunakan dalam proses klasifikasi adalah fiturvektor yang memiliki hasil terbaik. Berdasarkan hasil pengujian yang telah dilakukan, metode yang dapat menghasilkan fitur terbaik adalah metode LBP dengan persentase akurasi lebih tinggi dibandingkan dengan dua metode lainnya.
SISTEM PENGOREKSIAN EJAAN TEKS BAHASA INDONESIA DENGAN DAMERAU LEVENSHTEIN DISTANCE DAN RECURRENT NEURA L NETWORK Augusfian, Fendy; Mawardi, Viny Christanti; Hendryli, Janson; Naga, Dali Santun
Computatio : Journal of Computer Science and Information Systems Vol. 3 No. 2 (2019): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v3i2.6038

Abstract

This research was intended to create Indonesian Text Spelling Correction system with the capability to handle and make correction to both kind of spelling errors, non-word and real-word errors. Existing spelling correction system was analyzed and made some adjustment and modifications to boost its accuracy. The proposed spelling correction system is built with Damerau-Levenshtein Distance that used in existing spelling correction system along with the adjustment and modifications. The result that achieved by the system that uses by existing spelling correction with the word level accuracy of 40.6% and an average processing speed of 18.4 ms per sentence while the result that achieved by the system that uses Damerau-Levenshtein Distance and Recurrent Neural Network with the word level accuracy of 21.3% and an average processing speed of 29.21 ms per sentence. The result of retest text that achieved by the system that uses Damerau-Levenshtein Distance and Recurrent Neural Network with the word level accuracy of 74%. Tujuan dari penelitian ini adalah untuk membuat sistem pengoreksian ejaan teks Bahasa Indonesia, yang memiliki kemampuan untuk menangani dan memperbaiki kesalahan ejaan, baik kesalahan kata tidak sah maupun kesalahan kata sah. Sistem koreksi ejaan yang sudah ada dianalisis kembali dan dilakukan beberapa penyesuaian dan koreksi untuk meningkatkan akurasi. Sistem koreksi ejaan yang diusulkan dibuat dengan metode Damerau-Levenshtein, yang digunakan dengan penyesuaian dan koreksi dalam sistem koreksi ejaan yang sudah ada. Pencapaian yang dicapai oleh sistem koreksi ejaan yang sudah ada menghasilkan akurasi kata sebesar 40,6% dan kecepatan pemrosesan rata-rata 18,4 milidetik per kalimat dibandingkan hasil yang dicapai oleh sistem yang menggunakan Damerau-Levenshtein Distance dan Recurrent Neural Network Akurasi menghasilkan akurasi kata sebesar 21,3% dan kecepatan pemrosesan rata-rata adalah 29,21 milidetik per kalimat. Hasil pengujian ulang teks yang dicapai oleh sistem menggunakan Damerau-Levenshtein Distance dan Recurrent Neural Network menunjukkan akurasi kata sebesar dari 74%. 
Program Pendeteksi Perubahan Fungsi Lahan Menggunakan Metode Ridge Regression Dan Support Vector Machine (Studi Kasus: 95 Kecamatan Di Wilayah Bekasi, Depok Dan Tangerang) Christian, Christian; Hendryli, Janson; Herwindiati, Dyah Erny
Computatio : Journal of Computer Science and Information Systems Vol. 4 No. 1 (2020): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v4i1.7190

Abstract

Tulisan ini membahas tentang perubahan fungsi lahan yang terjadi pada tingkat kecamatan di wilayah Bekasi, Depok dan Tangerang  perlu dipertimbangkan ketika melakukan pengembangan di sekitar kota penyangga Jakarta. Program untuk mendeteksi perubahan penggunaan lahan menggunakan metode Ridge Regression dan Support Vector Machine bertujuan untuk melihat perubahan penggunaan lahan di wilayah Bekasi, Depok dan Tangerang dengan mengklasifikasikan jenis tanah menjadi 4 kelas yaitu kelas hijau, kelas sebagian hijau, kelas impervious, dan sebagian impervious menggunakan citra satelit Landsat 7 dan Landsat 8 pada band Biru, Hijau, Merah, NIR, SWIR-1, dan SWIR-2. Gambar Landsat yang digunakan akan melalui proses preprocessing menggunakan metode koreksi radiometrik Pengurangan Gelap untuk gambar Landsat 7 dan Landsat 8 dan metode gap fill untuk gambar Landsat 7. Setelah itu, pemotongan citra Landsat akan dilakukan ke tingkat kecamatan pada wilayah Bekasi, Depok dan Tangerang. Hasil klasifikasi akan digunakan untuk menentukan perubahan lahan dengan membandingkan dua gambar hasil klasifikasi dengan tahun yang berbeda. Hasil dari makalah ini menunjukkan bahwa model yang menggunakan metode mesin Support Vector memiliki akurasi gain yang lebih baik sebesar 83,00% untuk data Landsat 7 dan 8 dibandingkan dengan model yang menggunakan metode Ridge Regression, yang memiliki akurasi perolehan 61,96% untuk data Landsat 7 dan 61,28% untuk data Landsat 8.
Analisis Security Voice Authentication pada Sistem Login 2-FA Onggo, Gilbert Alexandro; Herwindiati, Dyah Erny; Hendryli, Janson
Computatio : Journal of Computer Science and Information Systems Vol. 5 No. 1 (2021): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v1i1.10915

Abstract

Program Sistem Login dengan API Otentikasi Suara merupakan sebuah program website yang dibuat untuk memberikan contoh untuk pengembang lain agar dapat membuat website sistem login yang aman. Program ini dibuat menggunakan bahasa pemrograman Python dengan program pengembangan Visual Studio Code, sedangkan berbagai modul dalam program menggunakan Flask dan MongoDB. Hasil dari pengujian program berupa analisa kerentanan program terhadap serangan injeksi SQL, XSS dan Replay. Hasil yang didapatkan berupa kerentanan terhadap penyerangan XSS dan terutama Replay. Serangan XSS dan injeksi dapat terjadi apabila program tidak ada proses filter terhadap bahasa pemrograman pada input. Serangan Replay dapat ditembus karena penggunaan token berbasis waktu. Penyerang dapat mengirim ulang data yang di rekam sebelum token kadaluwarsa. Untuk mencegah kebocoran data, program website dan API harus menggunakan Koneksi yang terenkripsi seperti SSL / TSL. API otentikasi suara dapat melakukan klasifikasi pengguna dengan akurasi 81.25% menggunakan 3 suara sebagai input awal. Namun, API otentikasi suara gagal dalam mencegah serangan replay spoofing dengan akurasi 66.66%. Kuesioner juga diberikan kepada pengembang lain mengenai contoh program yang dibuat dengan 32 responden. Hasil dari kuesioner menunjukkan bahwa “Analisis Security Voice Authenticator pada Sistem Login Two Factor Authentication” dapat menambah ilmu cybersecurity bagi pengembang lainnya.
Prediksi Kelembapan Tanah Pada Tingkat Kecamatan di Wilayah Bogor Dengan Metode CNN LSTM Sopany, Mitchell Ryu; Herwindiati, Dyah Erny; Hendryli, Janson
Computatio : Journal of Computer Science and Information Systems Vol. 6 No. 1 (2022): Computatio: Journal of Computer Science and Information Systems
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v6i1.15740

Abstract

Kelembapan tanah pada kecamatan di wilayah Bogor perlu diperhatikan sebagai acuan sumber air bersih untuk mencukupi kebutuhan air bersih yang tinggi di wilayah Jakarta. Aplikasi prediksi kelembapan tanah dibuat menggunakan bahasa pemrograman Python dengan metode CNN LSTM bertujuan untuk memprediksi kelembapan tanah pada tingkat kecamatan wilayah Bogor dalam kelompok kelembapan tanah tinggi, kelembapan tanah rendah, dan kering menggunakan data citra satelit Landsat 8. Citra satelit Landsat 8 dilakukan preprocessing dengan transformasi menjadi bernilai 8 bit dan pemotongan tiap kecamatan dalam wilayah Bogor terhadap band 2, 3, 4, 5, 6, dan 7. Prediksi kelembapan tanah dilakukan menggunakan metode CNN lSTM dengan input berupa nilai kelembapan tanah menggunakan nilai NDVI citra satelit Landsat 8. Output berupa citra prediksi kelembapan tanah yang dikelompokkan pada kelembapan tanah tinggi, kelembapan tanah rendah, dan kering. Hasil penelitian menunjukkan model prediksi kelembapan tanah memiliki nilai rata-rata R2 Score 0.7422, MAE 0.0798, dan MSE 0.0416 sehingga model dapat memprediksi kelembapan tanah dengan baik.